geoWithin
Definition
geoWithin
The
geoWithin
operator supports querying geographic points within a given geometry. Only points are returned, even ifindexShapes
value istrue
in the index definition.You can query points within a:
Circle
Bounding box
Polygon
When specifying the coordinates to search, longitude must be specified first and then the latitude. Longitude values can be between
-180
and180
, both inclusive. Latitude values can be between-90
and90
, both inclusive. Coordinate values can be integers or doubles.Note
Atlas Search does not support the following:
Non-default coordinate reference system (CRS)
Planar XY coordinate system (2 dimensional)
Coordinate pairs Point notation (that is,
pointFieldName: [12, 34]
)
Syntax
geoWithin
has the following syntax:
{ "$search": { "index": <index name>, // optional, defaults to "default" "geoWithin": { "path": "<field-to-search>", "box | circle | geometry": <object>, "score": <score-options> } } }
Options
geoWithin
uses the following terms to construct a query:
Field | Type | Description | Necessity |
---|---|---|---|
| object | Object that specifies the bottom left and top right GeoJSON points of a box to search within. The object takes the following fields: To learn how to specify GeoJSON data inside a GeoJSON object, see GeoJSON Objects. Either | conditional |
| object | Object that specifies the center point and the radius in meters to search within. The object contains the following GeoJSON fields:
To learn how to specify GeoJSON data inside a GeoJSON object, see GeoJSON Objects. Either | conditional |
| GeoJSON object | GeoJSON object that specifies the MultiPolygon or Polygon to search within. The polygon must be specified as a closed loop where the last position is the same as the first position. When calculating geospatial results, Atlas Search geoShape and geoWithin operators and MongoDB $geoIntersects operator use different geometries. This difference can be seen in how Atlas Search and MongoDB draw polygonal edges. Atlas Search draws polygons based on Cartesian distance, which is the shortest line between two points in the coordinate reference system. MongoDB draws polygons using the geodesic mode based on 2dsphere indexes that is built on top of a third-party library for geodesic types, or the flat mode, from 2d indexes. To learn more, see GeoJSON Objects. Atlas Search and MongoDB could return different results for geospatial queries involving polygons. To learn how to specify GeoJSON data inside a GeoJSON object, see GeoJSON Objects. Either | conditional |
| string or array of strings | Indexed geo type field or fields to search. | yes |
| object | Score to assign to matching search results. By default, the
score in the results is
For information on using | no |
Examples
The following examples use the listingsAndReviews
collection in the
sample_airbnb
database. If you have the sample dataset on your cluster, you can create a custom
Atlas Search index for geo type and run the
example queries on your cluster.
Use the following sample index definition for
indexing the address.location
field in the listingsAndReviews
collection:
1 { 2 "mappings": { 3 "fields": { 4 "address": { 5 "fields": { 6 "location": { 7 "type": "geo" 8 } 9 }, 10 "type": "document" 11 }, 12 "property_type": { 13 "type": "stringFacet" 14 } 15 } 16 } 17 }
box
Example
The following query uses the geoWithin
operator with
the box
field to search for
properties within a bounding box in Australia.
The query includes a:
$limit
stage to limit the output to3
results.$project
stage to exclude all fields exceptname
andaddress
.
Note
You don't need to specify indexes named default
in your Atlas Search
query. If your index has any other name, you must specify the
index
field.
Basic Example
The following query returns the documents that match the specified search criteria.
1 db.listingsAndReviews.aggregate([ 2 { 3 "$search": { 4 "geoWithin": { 5 "path": "address.location", 6 "box": { 7 "bottomLeft": { 8 "type": "Point", 9 "coordinates": [112.467, -55.050] 10 }, 11 "topRight": { 12 "type": "Point", 13 "coordinates": [168.000, -9.133] 14 } 15 } 16 } 17 } 18 }, 19 { 20 $limit: 3 21 }, 22 { 23 $project: { 24 "_id": 0, 25 "name": 1, 26 "address": 1 27 } 28 } 29 ])
{ "name" : "Surry Hills Studio - Your Perfect Base in Sydney", "address" : { "street" : "Surry Hills, NSW, Australia", "suburb" : "Darlinghurst", "government_area" : "Sydney", "market" : "Sydney", "country" : "Australia", "country_code" : "AU", "location" : { "type" : "Point", "coordinates" : [ 151.21554, -33.88029 ], "is_location_exact" : true } } } { "name" : "Sydney Hyde Park City Apartment (checkin from 6am)", "address" : { "street" : "Darlinghurst, NSW, Australia", "suburb" : "Darlinghurst", "government_area" : "Sydney", "market" : "Sydney", "country" : "Australia", "country_code" : "AU", "location" : { "type" : "Point", "coordinates" : [ 151.21346, -33.87603 ], "is_location_exact" : false } } } { "name" : "THE Place to See Sydney's FIREWORKS", "address" : { "street" : "Rozelle, NSW, Australia", "suburb" : "Lilyfield/Rozelle", "government_area" : "Leichhardt", "market" : "Sydney", "country" : "Australia", "country_code" : "AU", "location" : { "type" : "Point", "coordinates" : [ 151.17956, -33.86296 ], "is_location_exact" : true } } }
Metadata Example
The following query returns the number of types of properties (such as apartment, house, and so on) for the specified search criteria.
1 db.listingsAndReviews.aggregate([ 2 { 3 "$searchMeta": { 4 "facet": { 5 "operator": { 6 "geoWithin": { 7 "path": "address.location", 8 "box": { 9 "bottomLeft": { 10 "type": "Point", 11 "coordinates": [112.467, -55.050] 12 }, 13 "topRight": { 14 "type": "Point", 15 "coordinates": [168.000, -9.133] 16 } 17 } 18 } 19 }, 20 "facets": { 21 "propertyTypeFacet": { 22 "type": "string", 23 "path": "property_type" 24 } 25 } 26 } 27 } 28 } 29 ])
[ { count: { lowerBound: Long('610') }, facet: { propertyTypeFacet: { buckets: [ { _id: 'Apartment', count: Long('334') }, { _id: 'House', count: Long('168') }, { _id: 'Townhouse', count: Long('29') }, { _id: 'Guest suite', count: Long('20') }, { _id: 'Condominium', count: Long('11') }, { _id: 'Cabin', count: Long('8') }, { _id: 'Serviced apartment', count: Long('7') }, { _id: 'Villa', count: Long('7') }, { _id: 'Bungalow', count: Long('5') }, { _id: 'Guesthouse', count: Long('5') } ] } } } ]
circle
Example
The following query uses the geoWithin
operator with the circle
field to search for properties within one mile radius of specified
coordinates in Canada.
The query includes a:
$limit
stage to limit the output to3
results$project
stage to exclude all fields exceptname
andaddress
.
Note
You don't need to specify indexes named default
in your Atlas Search
query. If your index has any other name, you must specify the
index
field.
1 db.listingsAndReviews.aggregate([ 2 { 3 "$search": { 4 "geoWithin": { 5 "circle": { 6 "center": { 7 "type": "Point", 8 "coordinates": [-73.54, 45.54] 9 }, 10 "radius": 1600 11 }, 12 "path": "address.location" 13 } 14 } 15 }, 16 { 17 $limit: 3 18 }, 19 { 20 $project: { 21 "_id": 0, 22 "name": 1, 23 "address": 1 24 } 25 } 26 ])
{ "name" : "Ligne verte - à 15 min de métro du centre ville.", "address" : { "street" : "Montréal, Québec, Canada", "suburb" : "Hochelaga-Maisonneuve", "government_area" : "Mercier-Hochelaga-Maisonneuve", "market" : "Montreal", "country" : "Canada", "country_code" : "CA", "location" : { "type" : "Point", "coordinates" : [ -73.54949, 45.54548 ], "is_location_exact" : false } } } { "name" : "Belle chambre à côté Metro Papineau", "address" : { "street" : "Montréal, QC, Canada", "suburb" : "Gay Village", "government_area" : "Ville-Marie", "market" : "Montreal", "country" : "Canada", "country_code" : "CA", "location" : { "type" : "Point", "coordinates" : [ -73.54985, 45.52797 ], "is_location_exact" : false } } } { "name" : "L'IDÉAL, ( à 2 min du métro Pie-IX ).", "address" : { "street" : "Montréal, Québec, Canada", "suburb" : "Mercier-Hochelaga-Maisonneuve", "government_area" : "Mercier-Hochelaga-Maisonneuve", "market" : "Montreal", "country" : "Canada", "country_code" : "CA", "location" : { "type" : "Point", "coordinates" : [ -73.55208, 45.55157 ], "is_location_exact" : true } } }
geometry
Examples
The following examples use the geoWithin
operator with the
geometry
field to search for properties in Hawaii. The type
field
specifies whether the area is a GeoJSON Polygon or
MultiPolygon.
The queries include a:
$limit
stage to limit the output to3
results.$project
stage to exclude all fields exceptname
andaddress
.
Note
You don't need to specify indexes named default
in your Atlas Search
query. If your index has any other name, you must specify the
index
field.
➤ Use the Select your language drop-down menu on this page to set the language of the examples in this section.
The following Atlas Search query:
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
[ { "$search": { "index": "<INDEX-NAME>", "compound": { "must": [{ "geoWithin": { "geometry": { "type": "Polygon", "coordinates": [[[ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ]]] }, "path": "address.location" } }], "should": [{ "text": { "path": "property_type", "query": "Condominium" } }] } } } ]
1 SCORE: 2.238388776779175 _id: "1001265" 2 listing_url: "https://www.airbnb.com/rooms/1001265" 3 name: "Ocean View Waikiki Marina w/prkg" 4 summary: "A short distance from Honolulu's billion dollar mall, 5 and the same dis…" 6 ... 7 property_type: "Condominium" 8 ... 9 address: Object 10 street: "Honolulu, HI, United States" 11 suburb: "Oʻahu" 12 government_area: "Primary Urban Center" 13 market: "Oahu" 14 country: "United States" 15 country_code: "US" 16 location: Object 17 type: "Point" 18 coordinates: Array 19 0: -157.83919 20 1: 21.28634 21 is_location_exact: true 22 ... 23 24 SCORE: 2.238388776779175 _id: "10227000" 25 listing_url: "https://www.airbnb.com/rooms/10227000" 26 name: "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!" 27 summary: "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIF…" 28 ... 29 property_type: "Condominium" 30 ... 31 address: Object 32 street: "Lahaina, HI, United States" 33 suburb: "Maui" 34 government_area: "Lahaina" 35 market: "Maui" 36 country: "United States" 37 country_code: "US" 38 location: Object 39 type: "Point" 40 coordinates: Array 41 0: -156.68012 42 1: 20.96996 43 is_location_exact: true 44 ... 45 46 SCORE: 2.238388776779175 _id: "10266175" 47 listing_url: "https://www.airbnb.com/rooms/10266175" 48 name: "Makaha Valley Paradise with OceanView" 49 summary: "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha …" 50 ... 51 property_type: "Condominium" 52 ... 53 address: Object 54 street: "Waianae, HI, United States" 55 suburb: "Leeward Side" 56 government_area: "Waianae" 57 market: "Oahu" 58 country: "United States" 59 country_code: "US" 60 location: Object 61 type: "Point" 62 coordinates: Array 63 0: -158.20291 64 1: 21.4818 65 is_location_exact: true 66 ... 67 68 SCORE: 2.238388776779175 _id: "1042446" 69 listing_url: "https://www.airbnb.com/rooms/1042446" 70 name: "March 2019 availability! Oceanview on Sugar Beach!" 71 summary: "" 72 ... 73 property_type: "Condominium" 74 ... 75 address: Object 76 street: "Kihei, HI, United States" 77 suburb: "Maui" 78 government_area: "Kihei-Makena" 79 market: "Maui" 80 country: "United States" 81 country_code: "US" 82 location: Object 83 type: "Point" 84 coordinates: Array 85 0: -156.46881 86 1: 20.78621 87 is_location_exact: true 88 ... 89 90 SCORE: 2.238388776779175 _id: "10527243" 91 listing_url: "https://www.airbnb.com/rooms/10527243" 92 name: "Tropical Jungle Oasis" 93 summary: "2 bedrooms, one with a queen sized bed, one with 2 single beds. 1 and …" 94 ... 95 property_type: "Condominium" 96 ... 97 address: Object 98 street: "Hilo, HI, United States" 99 suburb: "Island of Hawaiʻi" 100 government_area: "South Hilo" 101 market: "The Big Island" 102 country: "United States" 103 country_code: "US" 104 location: Object 105 type: "Point" 106 coordinates: Array 107 0: -155.09259 108 1: 19.73108 109 is_location_exact: true 110 ... 111 112 SCORE: 2.238388776779175 _id: "1104768" 113 listing_url: "https://www.airbnb.com/rooms/1104768" 114 name: "2 Bdrm/2 Bath Family Suite Ocean View" 115 summary: "This breathtaking 180 degree view of Waikiki is one of a kind. You wil…" 116 ... 117 property_type: "Condominium" 118 ... 119 address: Object 120 street: "Honolulu, HI, United States" 121 suburb: "Waikiki" 122 government_area: "Primary Urban Center" 123 market: "Oahu" 124 country: "United States" 125 country_code: "US" 126 location: Object 127 type: "Point" 128 coordinates: Array 129 0: -157.82696 130 1: 21.27971 131 is_location_exact: true 132 ... 133 134 SCORE: 2.238388776779175 _id: "11207193" 135 listing_url: "https://www.airbnb.com/rooms/11207193" 136 name: "302 Kanai A Nalu Ocean front/view" 137 summary: "Welcome to Kana'i A Nalu a quiet resort that sits on the ocean away fr…" 138 ... 139 property_type: "Condominium" 140 ... 141 address: Object 142 street: "Wailuku, HI, United States" 143 suburb: "Maui" 144 government_area: "Kihei-Makena" 145 market: "Maui" 146 country: "United States" 147 country_code: "US" 148 location: Object 149 type: "Point" 150 coordinates: Array 151 0: -156.5039 152 1: 20.79664 153 is_location_exact: true 154 ... 155 156 SCORE: 2.238388776779175 _id: "11319047" 157 listing_url: "https://www.airbnb.com/rooms/11319047" 158 name: "Sugar Beach Resort 1BR Ground Floor Condo !" 159 summary: "The Sugar Beach Resort enjoys a beachfront setting fit for a postcard." 160 ... 161 property_type: "Condominium" 162 ... 163 address: Object 164 street: "Kihei, HI, United States" 165 suburb: "Maui" 166 government_area: "Kihei-Makena" 167 market: "Maui" 168 country: "United States" 169 country_code: "US" 170 location: Object 171 type: "Point" 172 coordinates: Array 173 0: -156.46697 174 1: 20.78484 175 is_location_exact: true 176 ... 177 178 SCORE: 2.238388776779175 _id: "11695887" 179 listing_url: "https://www.airbnb.com/rooms/11695887" 180 name: "2 BR Oceanview - Great Location!" 181 summary: "Location, location, location... This is a great 2 bed, 2 bath condo is…" 182 ... 183 property_type: "Condominium" 184 ... 185 address: Object 186 street: "Kihei, HI, United States" 187 suburb: "Kihei/Wailea" 188 government_area: "Kihei-Makena" 189 market: "Maui" 190 country: "United States" 191 country_code: "US" 192 location: Object 193 type: "Point" 194 coordinates: Array 195 0: -156.44917 196 1: 20.73013 197 is_location_exact: true 198 ... 199 200 SCORE: 2.238388776779175 _id: "11817249" 201 listing_url: "https://www.airbnb.com/rooms/11817249" 202 name: "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC" 203 summary: "Book with confidence this stunning 2 bedroom, 2 bathroom condo at the …" 204 ... 205 property_type: "Condominium" 206 ... 207 address: Object 208 street: "Kihei, HI, United States" 209 suburb: "Maui" 210 government_area: "Kihei-Makena" 211 market: "Maui" 212 country: "United States" 213 country_code: "US" 214 location: Object 215 type: "Point" 216 coordinates: Array 217 0: -156.4409 218 1: 20.69735 219 is_location_exact: true 220 ...
db.listingsAndReviews.aggregate([ { "$search": { "index": "<INDEX-NAME>", "compound": { "must": [{ "geoWithin": { "geometry": { "type": "Polygon", "coordinates": [[[ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ]]] }, "path": "address.location" } }], "should": [{ "text": { "path": "property_type", "query": "Condominium" } }] } } }, { "$limit": 10 }, { $project: { "_id": 0, "name": 1, "address": 1, "property_type": 1, score: { $meta: "searchScore" } } } ])
<<<<<<<< HEAD:source/includes/fts/geo/procedures/steps-fts-tutorial-run-geo-query-compass.yaml stepnum: 1 title: "Connect to your cluster in |compass|." ref: connect-to-database-deployment-fts-compass content: | Open |compass| and connect to your {+cluster+}. For detailed instructions on connecting, see :ref:`atlas-connect-via-compass`. --- stepnum: 2 title: "Use the ``listingsAndReviews`` collection in the ``sample_airbnb`` database." ref: use-sample-airbnb-compass content: | On the :guilabel:`Database` screen, click the ``sample_airbnb`` database, then click the ``listingsAndReviews`` collection. --- stepnum: 3 title: "Run an |fts| query on the ``listingsAndReviews`` collection." ref: run-geo-query-compass content: | The following query: .. include:: /includes/fts/facts/fact-fts-tutorial-run-geo-query-results.rst To run this |fts| query in |compass|: a. Click the :guilabel:`Aggregations` tab. #. Click :guilabel:`Select...`, then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click :guilabel:`Add Stage` to add additional stages. .. list-table:: :header-rows: 1 :widths: 25 75 * - Pipeline Stage - Query * - ``$search`` - .. code-block:: javascript { 'index': 'geo-json-tutorial', 'compound': { 'must': [ { 'geoWithin': { 'geometry': { 'type': 'Polygon', 'coordinates': [ [ [ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ] ] ] }, 'path': 'address.location' } } ], 'should': [ { 'text': { 'path': 'property_type', 'query': 'Condominium' } } ] } } * - ``$limit`` - .. code-block:: javascript 10 * - ``$project`` - .. code-block:: javascript { '_id': 0, 'name': 1, 'address': 1, 'property_type': 1, 'score': { '$meta': 'searchScore' } } If you enabled :guilabel:`Auto Preview`, |compass| displays the following documents next to the ``$project`` pipeline stage: .. code-block:: json :copyable: false :linenos: { ======== [ { >>>>>>>> 44b896764 (DOCSP-47238 Performance Options reference section + tutorial example migration):source/includes/fts/geo/shell-query-output.js name: 'Ocean View Waikiki Marina w/prkg', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Oʻahu', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.83919, 21.28634 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!', property_type: 'Condominium', address: { street: 'Lahaina, HI, United States', suburb: 'Maui', government_area: 'Lahaina', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.68012, 20.96996 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Makaha Valley Paradise with OceanView', property_type: 'Condominium', address: { street: 'Waianae, HI, United States', suburb: 'Leeward Side', government_area: 'Waianae', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -158.20291, 21.4818 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'March 2019 availability! Oceanview on Sugar Beach!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46881, 20.78621 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Tropical Jungle Oasis', property_type: 'Condominium', address: { street: 'Hilo, HI, United States', suburb: 'Island of Hawaiʻi', government_area: 'South Hilo', market: 'The Big Island', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -155.09259, 19.73108 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 Bdrm/2 Bath Family Suite Ocean View', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Waikiki', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.82696, 21.27971 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '302 Kanai A Nalu Ocean front/view', property_type: 'Condominium', address: { street: 'Wailuku, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.5039, 20.79664 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Sugar Beach Resort 1BR Ground Floor Condo !', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46697, 20.78484 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 BR Oceanview - Great Location!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Kihei/Wailea', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.44917, 20.73013 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.4409, 20.69735 ], is_location_exact: true } }, score: 2.238388776779175 } ]
To learn how to run the following queries in the MongoDB Compass, see Define Your Query.
1 using MongoDB.Bson; 2 using MongoDB.Bson.IO; 3 using MongoDB.Bson.Serialization; 4 using MongoDB.Bson.Serialization.Attributes; 5 using MongoDB.Bson.Serialization.Conventions; 6 using MongoDB.Driver; 7 using MongoDB.Driver.GeoJsonObjectModel; 8 using MongoDB.Driver.Search; 9 using System; 10 11 public class GeoQuery 12 { 13 private const string MongoConnectionString = "<connection-string>"; 14 15 public static void Main(string[] args) 16 { 17 // allow automapping of the camelCase database fields to our AirbnbDocument 18 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 19 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 20 21 // connect to your Atlas cluster 22 var mongoClient = new MongoClient(MongoConnectionString); 23 var airbnbDatabase = mongoClient.GetDatabase("sample_airbnb"); 24 var airbnbCollection = airbnbDatabase.GetCollection<AirbnbDocument>("listingsAndReviews"); 25 26 // declare data for the compound query 27 string property_type = "Condominium"; 28 var coordinates = new GeoJson2DCoordinates[] 29 { 30 new(-161.323242, 22.512557), 31 new(-152.446289, 22.065278), 32 new(-156.09375, 17.811456), 33 new(-161.323242, 22.512557) 34 }; 35 var polygon = GeoJson.Polygon(coordinates); 36 37 // define and run pipeline 38 var results = airbnbCollection.Aggregate() 39 .Search(Builders<AirbnbDocument>.Search.Compound() 40 .Must(Builders<AirbnbDocument>.Search.GeoWithin(airbnb => airbnb.Address.Location, polygon)) 41 .Should((Builders<AirbnbDocument>.Search.Text(airbnb => airbnb.PropertyType, property_type))), 42 indexName: "<INDEX-NAME>") 43 .Limit (10) 44 .Project<AirbnbDocument>(Builders<AirbnbDocument>.Projection 45 .Include(airbnb => airbnb.PropertyType) 46 .Include(airbnb => airbnb.Address.Location) 47 .Include(airbnb => airbnb.Name) 48 .Exclude(airbnb => airbnb.Id) 49 .MetaSearchScore(airbnb => airbnb.Score)) 50 .ToList(); 51 52 // print results 53 foreach (var x in results) { 54 Console.WriteLine(x.ToJson()); 55 } 56 } 57 } 58 [ ]59 public class AirbnbDocument 60 { 61 [ ]62 public ObjectId Id { get; set; } 63 public String Name { get; set; } 64 [ ] 65 public string PropertyType { get; set; } 66 public Address Address { get; set; } 67 public double Score { get; set; } 68 } 69 [ ]70 public class Address 71 { 72 public GeoJsonPoint<GeoJson2DCoordinates> Location { get; set; } 73 }
{ "name" : "Ocean View Waikiki Marina w/prkg", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-157.83919, 21.286339999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.68011999999999, 20.96996], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Makaha Valley Paradise with OceanView", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-158.20291, 21.4818], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "March 2019 availability! Oceanview on Sugar Beach!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.46880999999999, 20.786210000000001], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Tropical Jungle Oasis", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-155.09259, 19.731079999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "2 Bdrm/2 Bath Family Suite Ocean View", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-157.82696000000001, 21.279710000000001], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "302 Kanai A Nalu Ocean front/view", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.50389999999999, 20.79664], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Sugar Beach Resort 1BR Ground Floor Condo !", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.46697, 20.784839999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "2 BR Oceanview - Great Location!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.44917000000001, 20.730129999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.4409, 20.69735], "is_location_exact" : true } }, "score" : 2.2383887767791748 }
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 7 "go.mongodb.org/mongo-driver/v2/bson" 8 "go.mongodb.org/mongo-driver/v2/mongo" 9 "go.mongodb.org/mongo-driver/v2/mongo/options" 10 ) 11 12 func main() { 13 // connect to your Atlas cluster 14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>")) 15 if err != nil { 16 panic(err) 17 } 18 defer client.Disconnect(context.TODO()) 19 20 // set namespace 21 collection := client.Database("sample_airbnb").Collection("listingsAndReviews") 22 23 // define polygon 24 polygon := [][][]float64{{ 25 {-161.323242, 22.512557}, 26 {-152.446289, 22.065278}, 27 {-156.09375, 17.811456}, 28 {-161.323242, 22.512557}, 29 }} 30 31 // define pipeline 32 searchStage := bson.D{{"$search", bson.M{ 33 "index": "<INDEX-NAME>", 34 "compound": bson.M{ 35 "must": bson.M{ 36 "geoWithin": bson.M{ 37 "geometry": bson.M{ 38 "type": "Polygon", 39 "coordinates": polygon, 40 }, 41 "path": "address.location", 42 }, 43 }, 44 "should": bson.M{ 45 "text": bson.M{ 46 "path": "property_type", 47 "query": "Condominium", 48 }}, 49 }, 50 }, 51 }} 52 limitStage := bson.D{{"$limit", 10}} 53 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 54 55 // run pipeline 56 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 57 if err != nil { 58 panic(err) 59 } 60 61 // print results 62 var results []bson.D 63 if err = cursor.All(context.TODO(), &results); err != nil { 64 panic(err) 65 } 66 for _, result := range results { 67 fmt.Println(result) 68 } 69 }
package main import ( "context" "fmt" "go.mongodb.org/mongo-driver/v2/bson" "go.mongodb.org/mongo-driver/v2/mongo" "go.mongodb.org/mongo-driver/v2/mongo/options" ) func main() { // connect to your Atlas cluster client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>")) if err != nil { panic(err) } defer client.Disconnect(context.TODO()) // set namespace collection := client.Database("sample_airbnb").Collection("listingsAndReviews") // define polygon polygon := [][][]float64{{ {-161.323242, 22.512557}, {-152.446289, 22.065278}, {-156.09375, 17.811456}, {-161.323242, 22.512557}, }} // define pipeline searchStage := bson.D{{"$search", bson.M{ "index": "<INDEX-NAME>", "compound": bson.M{ "must": bson.M{ "geoWithin": bson.M{ "geometry": bson.M{ "type": "Polygon", "coordinates": polygon, }, "path": "address.location", }, }, "should": bson.M{ "text": bson.M{ "path": "property_type", "query": "Condominium", }}, }, }, }} limitStage := bson.D{{"$limit", 10}} projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} // run pipeline cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) if err != nil { panic(err) } // print results var results []bson.D if err = cursor.All(context.TODO(), &results); err != nil { panic(err) } for _, result := range results { fmt.Println(result) } }
1 import java.util.Arrays; 2 import static com.mongodb.client.model.Filters.eq; 3 import static com.mongodb.client.model.Aggregates.limit; 4 import static com.mongodb.client.model.Aggregates.project; 5 import static com.mongodb.client.model.Projections.computed; 6 import static com.mongodb.client.model.Projections.excludeId; 7 import static com.mongodb.client.model.Projections.fields; 8 import static com.mongodb.client.model.Projections.include; 9 import com.mongodb.client.MongoClient; 10 import com.mongodb.client.MongoClients; 11 import com.mongodb.client.MongoCollection; 12 import com.mongodb.client.MongoDatabase; 13 import org.bson.Document; 14 15 public class GeoQuery { 16 public static void main( String[] args ) { 17 Document agg = new Document( "$search", 18 new Document( "index", "<INDEX-NAME>") 19 .append("compound", 20 new Document("must", Arrays.asList(new Document("geoWithin", 21 new Document("geometry", 22 new Document("type", "Polygon") 23 .append("coordinates", Arrays.asList(Arrays.asList(Arrays.asList(-161.323242d, 22.512557d), Arrays.asList(-152.446289d, 22.065278d), Arrays.asList(-156.09375d, 17.811456d), Arrays.asList(-161.323242d, 22.512557d))))) 24 .append("path", "address.location")))) 25 .append("should", Arrays.asList(new Document("text", 26 new Document("path", "property_type") 27 .append("query", "Condominium")))))); 28 29 String uri = "<connection-string>"; 30 31 try (MongoClient mongoClient = MongoClients.create(uri)) { 32 MongoDatabase database = mongoClient.getDatabase("sample_airbnb"); 33 MongoCollection<Document> collection = database.getCollection("listingsAndReviews"); 34 35 collection.aggregate(Arrays.asList(agg, 36 limit(10), 37 project(fields(excludeId(), include("name", "address", "property_type"), computed("score", new Document("$meta", "searchScore")))))) 38 .forEach(doc -> System.out.println(doc.toJson() + "\n")); 39 } 40 } 41 }
The following code example:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // connect to your Atlas cluster 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 13 // set namespace 14 val database = mongoClient.getDatabase("sample_airbnb") 15 val collection = database.getCollection<Document>("listingsAndReviews") 16 17 runBlocking { 18 // define pipeline 19 val agg = Document( 20 "\$search", 21 Document("index", "<INDEX-NAME>") 22 .append( 23 "compound", 24 Document( 25 "must", listOf( 26 Document( 27 "geoWithin", 28 Document( 29 "geometry", 30 Document("type", "Polygon") 31 .append( 32 "coordinates", 33 listOf( 34 listOf( 35 listOf(-161.323242, 22.512557), 36 listOf(-152.446289, 22.065278), 37 listOf(-156.09375, 17.811456), 38 listOf(-161.323242, 22.512557) 39 ) 40 ) 41 ) 42 ) 43 .append("path", "address.location") 44 ) 45 ) 46 ) 47 .append( 48 "should", listOf( 49 Document( 50 "text", 51 Document("path", "property_type") 52 .append("query", "Condominium") 53 ) 54 ) 55 ) 56 ) 57 ) 58 59 // run pipeline and print results 60 val resultsFlow = collection.aggregate<Document>( 61 listOf( 62 agg, 63 limit(10), 64 project(fields( 65 excludeId(), 66 include("name", "address", "property_type"), 67 computed("score", Document("\$meta", "searchScore")) 68 )) 69 ) 70 ) 71 resultsFlow.collect { println(it) } 72 } 73 mongoClient.close() 74 }
Document{{name=Ocean View Waikiki Marina w/prkg, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Oʻahu, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.83919, 21.28634], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!, property_type=Condominium, address=Document{{street=Lahaina, HI, United States, suburb=Maui, government_area=Lahaina, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.68012, 20.96996], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Makaha Valley Paradise with OceanView, property_type=Condominium, address=Document{{street=Waianae, HI, United States, suburb=Leeward Side, government_area=Waianae, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-158.20291, 21.4818], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=March 2019 availability! Oceanview on Sugar Beach!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46881, 20.78621], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Tropical Jungle Oasis, property_type=Condominium, address=Document{{street=Hilo, HI, United States, suburb=Island of Hawaiʻi, government_area=South Hilo, market=The Big Island, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-155.09259, 19.73108], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=2 Bdrm/2 Bath Family Suite Ocean View, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Waikiki, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.82696, 21.27971], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=302 Kanai A Nalu Ocean front/view, property_type=Condominium, address=Document{{street=Wailuku, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.5039, 20.79664], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Sugar Beach Resort 1BR Ground Floor Condo !, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46697, 20.78484], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=2 BR Oceanview - Great Location!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Kihei/Wailea, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.44917, 20.73013], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.4409, 20.69735], is_location_exact=true}}}}, score=2.238388776779175}}
The following code example:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Iterates over the cursor to print the documents that match the query.
1 const { MongoClient } = require("mongodb"); 2 3 // connect to your Atlas cluster 4 const uri ="<connection-string>"; 5 6 const client = new MongoClient(uri); 7 8 async function run() { 9 try { 10 await client.connect(); 11 12 // set namespace 13 const database = client.db("sample_airbnb"); 14 const coll = database.collection("listingsAndReviews"); 15 16 // define pipeline 17 const agg = [ 18 { 19 '$search': { 20 'index': '<INDEX-NAME>', 21 'compound': { 22 'must': [ 23 { 24 'geoWithin': { 25 'geometry': { 26 'type': 'Polygon', 27 'coordinates': [ 28 [ 29 [ 30 -161.323242, 22.512557 31 ], [ 32 -152.446289, 22.065278 33 ], [ 34 -156.09375, 17.811456 35 ], [ 36 -161.323242, 22.512557 37 ] 38 ] 39 ] 40 }, 41 'path': 'address.location' 42 } 43 } 44 ], 45 'should': [ 46 { 47 'text': { 48 'path': 'property_type', 49 'query': 'Condominium' 50 } 51 } 52 ] 53 } 54 } 55 }, { 56 '$limit': 10 57 }, { 58 '$project': { 59 '_id': 0, 60 'name': 1, 61 'address': 1, 62 'property_type': 1, 63 'score': { 64 '$meta': 'searchScore' 65 } 66 } 67 } 68 ]; 69 // run pipeline 70 const result = await coll.aggregate(agg); 71 72 // print results 73 await result.forEach((doc) => console.log(doc)); 74 } finally { 75 await client.close(); 76 } 77 } 78 run().catch(console.dir);
The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 { 9 '$search': { 10 'index': '<INDEX-NAME>', 11 'compound': { 12 'must': [ 13 { 14 'geoWithin': { 15 'geometry': { 16 'type': 'Polygon', 17 'coordinates': [ 18 [ 19 [ 20 -161.323242, 22.512557 21 ], [ 22 -152.446289, 22.065278 23 ], [ 24 -156.09375, 17.811456 25 ], [ 26 -161.323242, 22.512557 27 ] 28 ] 29 ] 30 }, 31 'path': 'address.location' 32 } 33 } 34 ], 35 'should': [ 36 { 37 'text': { 38 'path': 'property_type', 39 'query': 'Condominium' 40 } 41 } 42 ] 43 } 44 } 45 }, { 46 '$limit': 10 47 }, { 48 '$project': { 49 '_id': 0, 50 'name': 1, 51 'address': 1, 52 'property_type': 1, 53 'score': { 54 '$meta': 'searchScore' 55 } 56 } 57 } 58 ] 59 # run pipeline 60 result = client["sample_airbnb"]["listingsAndReviews"].aggregate(pipeline) 61 62 # print results 63 for i in result: 64 print(i)
{ "address": { "country": "United States", "country_code": "US", "government_area": "Primary Urban Center", "location": { "coordinates": [ -157.83919, 21.28634 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Honolulu, HI, United States", "suburb": "O\u02bbahu" }, "name": "Ocean View Waikiki Marina w/prkg", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Lahaina", "location": { "coordinates": [ -156.68012, 20.96996 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Lahaina, HI, United States", "suburb": "Maui" }, "name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Waianae", "location": { "coordinates": [ -158.20291, 21.4818 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Waianae, HI, United States", "suburb": "Leeward Side" }, "name": "Makaha Valley Paradise with OceanView", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.46881, 20.78621 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "March 2019 availability! Oceanview on Sugar Beach!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "South Hilo", "location": { "coordinates": [ -155.09259, 19.73108 ], "is_location_exact": true, "type": "Point" }, "market": "The Big Island", "street": "Hilo, HI, United States", "suburb": "Island of Hawai\u02bbi" }, "name": "Tropical Jungle Oasis", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Primary Urban Center", "location": { "coordinates": [ -157.82696, 21.27971 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Honolulu, HI, United States", "suburb": "Waikiki" }, "name": "2 Bdrm/2 Bath Family Suite Ocean View", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.5039, 20.79664 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Wailuku, HI, United States", "suburb": "Maui" }, "name": "302 Kanai A Nalu Ocean front/view", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.46697, 20.78484 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "Sugar Beach Resort 1BR Ground Floor Condo !", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.44917, 20.73013 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Kihei/Wailea" }, "name": "2 BR Oceanview - Great Location!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.4409, 20.69735 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC", "property_type": "Condominium", "score": 2.238388776779175 }
The following examples use the geoWithin
operator with the
geometry
field to search for properties in Hawaii. The type
field
specifies whether the area is a GeoJSON Polygon or
MultiPolygon.
The query includes a:
$limit
stage to limit the output to3
results.$project
stage to exclude all fields exceptname
andaddress
.
Note
You don't need to specify indexes named default
in your Atlas Search
query. If your index has any other name, you must specify the
index
field.
1 .. input:: 2 :language: json 3 :linenos: 4 5 db.listingsAndReviews.aggregate([ 6 { 7 "$search": { 8 "geoWithin": { 9 "geometry": { 10 "type": "MultiPolygon", 11 "coordinates": [ 12 [[[-157.8412413882,21.2882235819], 13 [-157.8607925468,21.2962046205], 14 [-157.8646640634,21.3077019651], 15 [-157.862776699,21.320776283], 16 [-157.8341758705,21.3133826738], 17 [-157.8349985678,21.3000822569], 18 [-157.8412413882,21.2882235819]]], 19 [[[-157.852898124,21.301208833], 20 [-157.8580050499,21.3050871833], 21 [-157.8587346108,21.3098050385], 22 [-157.8508811028,21.3119240258], 23 [-157.8454308541,21.30396767], 24 [-157.852898124,21.301208833]]] 25 ] 26 }, 27 "path": "address.location" 28 } 29 } 30 }, 31 { 32 $limit: 3 33 }, 34 { 35 $project: { 36 "_id": 0, 37 "name": 1, 38 "address": 1 39 } 40 } 41 ]) 42 43 .. output:: 44 :language: javascript 45 :visible: false 46 47 { 48 "name" : "Heart of Honolulu, 2BD gem! Free Garage Parking!", 49 "address" : { 50 "street" : "Honolulu, HI, United States", 51 "suburb" : "Makiki/Lower Punchbowl/Tantalus", 52 "government_area" : "Primary Urban Center", 53 "market" : "Oahu", 54 "country" : "United States", 55 "country_code" : "US", 56 "location" : { 57 "type" : "Point", 58 "coordinates" : [ -157.84343, 21.30852 ], 59 "is_location_exact" : false 60 } 61 } 62 } 63 { 64 "name" : "Private Studio closed to town w/ compact parking", 65 "address" : { 66 "street" : "Honolulu, HI, United States", 67 "suburb" : "Oʻahu", 68 "government_area" : "Primary Urban Center", 69 "market" : "Oahu", 70 "country" : "United States", 71 "country_code" : "US", 72 "location" : { 73 "type" : "Point", 74 "coordinates" : [ -157.85228, 21.31184 ], 75 "is_location_exact" : true 76 } 77 } 78 } 79 { 80 "name" : "Comfortable Room (2) at Affordable Rates", 81 "address" : { 82 "street" : "Honolulu, HI, United States", 83 "suburb" : "Oʻahu", 84 "government_area" : "Primary Urban Center", 85 "market" : "Oahu", 86 "country" : "United States", 87 "country_code" : "US", 88 "location" : { 89 "type" : "Point", 90 "coordinates" : [ -157.83889, 21.29776 ], 91 "is_location_exact" : false 92 } 93 } 94 }