Docs Menu
Docs Home
/
Atlas
/ / / /

Sort Atlas Search Results

Atlas Search allows you to sort the results in ascending or descending order on fields that you define in your Atlas Search index. You can sort by the following field types using the sort option:

  • boolean

  • date

  • number (integer, float, and double values)

  • objectId

  • uuid

  • string (indexed as the token type)

You can also sort by the score of the documents in the results and by null values.

Atlas supports non-sharded sort queries across all major and minor MongoDB 5.0 and later versions. Sharded sort queries are available on all major releases for 6.0 and on all major and minor releases for 7.0 and later versions.

To sort your Atlas Search results, you must do the following:

  1. Create an Atlas Search index on the fields to sort the results by.

    To sort on boolean, date, number, UUID, and objectId fields, use dynamic or static mappings. To sort on string fields, you must use static mappings to index the field as the token type.

  2. Create and run your query with the sort option against the fields you defined in the index for sorting. To learn more, see Syntax.

The sort option takes a document that specifies the fields to sort by and the respective sort order. Atlas Search follows the MongoDB comparison order for the supported data types. It treats UUID values like BinData. To learn more, see non-existent fields.

You can specify the following sort order to sort your results by:

1

Sort in ascending order.

When you sort in ascending order, Atlas Search returns documents with missing values before documents with values.

-1

Sort in descending order.

You can also sort by score in ascending or descending order. The sort option takes a document that specifies the $meta expression, which requires the searchScore value.

Example

Suppose your application allows users to skip to the last page of the search results. The following example sorts the results by score in ascending order so that the document with the lowest score displays at the top of the results:

sort: {score: {$meta: "searchScore", order: 1}}

You can use sort to also ensure that the results have a determined order when multiple documents in the results have identical scores. For example, if you sort the results by a unique field, such as a date field named lastUpdated as shown in the following example, Atlas Search returns results with identical scores in a determined order:

Example

sort: {score: {$meta: "searchScore"}, lastUpdated: 1}

However, if you don't specify a unique field to sort the results by, Atlas Search returns the results sorted by score in descending order. Atlas Search returns results with identical scores or values in an arbitrary order. The following example doesn't sort the results by a unique field.

Example

sort: {score: {$meta: "searchScore"}}

To learn more, see Score the Documents in the Results.

Atlas Search flattens the arrays for sorting.

Example

Consider the following array:

[4, [1, [8,5], 9], 2]

Atlas Search flattens the preceding array similar to the following:

4, 1, 8, 5, 9, 2

For an ascending sort, Atlas Search uses 1 to compare the array to other values. For a descending sort, Atlas Search uses 9 to compare the array to other values.

When comparing with elements inside an array:

  • For an ascending sort, Atlas Search compares the smallest elements of the array or performs a less than (<) comparison.

    Example

    Atlas Search sorts results in the following order if you sort by numbers in ascending order:

    -20
    [-3, 12] // <- -3 comes before 5.
    5
    [6, 18] // <- 6 comes after 5.
    13
    14
  • For a descending sort, Atlas Search compares the largest elements of the array or performs a greater than (>) comparison.

    Example

    Atlas Search sorts results in the following order if you sort by numbers in descending order:

    [6, 18] // <- 18 comes before 14.
    14
    13
    [-3, 12] // <- 12 comes after 13.
    5
    -20

When sorting over array fields that contain values of multiple BSON types, Atlas Search selects a representative element from the array to use for comparison according to the MongoDB comparison and sort order by default.

  • For an ascending sort, Atlas Search uses the element with the lowest BSON type.

  • For a descending sort, Atlas Search uses the element with the highest BSON type.

If there are multiple values of the same BSON type in the array, standard sort behavior for the selected type applies.

Example

Consider the following array:

[ 'foo', null, 15, true, false ]
  • For an ascending sort, Atlas Search uses null, as it is the lowest supported BSON type.

  • For a descending sort, Atlas Search uses true, as it is the highest BSON type in the array and Atlas Search ranks true values above false values.

However, if you set noData: highest in your sort syntax, Atlas Search considers null and missing values as the highest BSON type. For the example array, the following behavior applies:

  • For an ascending sort, Atlas Search uses 15, as it is now the lowest BSON type in the array.

  • For a descending sort, Atlas Search uses null, as it is now the highest BSON type in the array.

To learn more, see Sort by Null and Missing Values.

For an example, see Sort on Multi-Typed Arrays.

Atlas Search treats null values as equal to missing and empty values, and the order of documents with these values is non-deterministic when sorting.

By default, Atlas Search follows the MongoDB comparison and sort order and considers null values as lower than all other supported BSON types. Therefore, null values appear at the top of the results during an ascending sort and at the bottom during a descending sort.

To configure where null values appear in the results, specify the noData field in your sort syntax. The noData field takes the following values:

  • lowest (default): Sets null values as the lowest BSON type during sorting. Sorts null values at the top of the results during an ascending sort and at the bottom during a descending sort.

  • highest: Sets null values as the highest BSON type during sorting. Sorts null values at the bottom of the results during an ascending sort and at the top during a descending sort.

Note

The same behavior applies when sorting on arrays with multiple types that contain null or missing values.

For examples, see Sort by Null Values and Sort on Multi-Typed Arrays.

To sort the parent documents by an embedded document field, you must do the following:

  • Index the parents of the embedded document child field as the document type.

  • Index the child field with string values within the embedded document as the token type. For child fields with number and date values, enable dynamic mapping to index those fields automatically.

Atlas Search sorts on parent documents only. It doesn't sort the child fields within an array of documents. For an example, see Sort Example.

Atlas Search indexes are eventually consistent, and values returned in results might be different from values used in sorting.

This feature optimizes queries that use $search with $limit as a subsequent stage. If Atlas Search needs to sort all documents in the collection, the response might be slow.

Atlas Search returns scores for all documents in the results. However, you might see higher scoring documents after lower scoring documents because the order of documents in the results is based on the sort criteria unless you explicitly sort by score.

sort has the following syntax:

1{
2 "$search": {
3 "index": "<index name>", // optional, defaults to "default"
4 "<operator>": { // such as "text", "compound", or "phrase"
5 <operator-specification>
6 },
7 "sort": {
8 score: {$meta: "searchScore"}, // optional field
9 "<field-to-sort>": <sort-order>, // 1 or -1, or a document
10 ...
11 }
12 }
13}
Parameter
Description

score

Optional. Determines whether to sort by the search score. To learn more, see Sort by Score And a Unique Field.

<field-to-sort>

Required. The name of the field to sort by.

<sort-order>

Required. Determines the sort order. Use 1 for ascending order and -1 for descending order.

If you want to specify the noData field, use a document with the following syntax:

"<field-to-sort>": {
order: 1 | -1, // required field
noData: "lowest" | "highest" // optional field
},
...

The following examples use the sample_mflix.movies, sample_airbnb.listingsAndReview, or a custom collection named users.


Use the Select your language drop-down menu to set the language of the examples in this section.


The example queries in this page use either the sample_mflix.movies, the sample_airbnb.listingsAndReview, or a custom collection. If you create the following indexes on these collections, you can run the sample queries against the indexed fields.

The index definition for the movies collection specifies the following:

  • Index awards.wins field as:

    • number type for sorting and querying, including running facet queries

  • Index released field as:

    • date type for sorting and querying, including running facet queries

  • Index title field as:

    • token type for sorting

    • string type for querying

1{
2 "mappings": {
3 "dynamic": true,
4 "fields": {
5 "awards": {
6 "dynamic": false,
7 "fields": {
8 "wins": [
9 {
10 "type": "number"
11 }
12 ]
13 },
14 "type": "document"
15 },
16 "released": [
17 {
18 "type": "date"
19 }
20 ],
21 "title": [{
22 "type": "token"
23 }, {
24 "type": "string"
25 }]
26 }
27 }
28}

For the preceding index definition, Atlas Search creates an index named default with static mappings on the specified fields.

The example queries against the sample_airbnb.listingsAndReviews collection use the following index. The index definition specifies dynamic mappings on the fields in the collection:

{
"mappings": {
"dynamic": true
}
}

The users collection contains the following documents:

db.users.insertMany([
{
"_id": 0,
"a": UUID("1a324de2-e34b-c87e-f2a1-42ce37ad74ed"),
"b": "hello",
"c": ObjectId("507f1f77bcf86cd799439011")
},
{
"_id": 1,
"a": UUID("3b241101-e2bb-4255-8caf-4136c566a962"),
"b": "hello",
"c": true
},
{
"_id": 2,
"a": UUID("dee11d4e-63c6-4d90-983c-5c9f1e79e96c"),
"b": "hello",
"c": "foo"
},
{
"_id": 3,
"b": "hello",
"c": UUID("3be11d4e-62cb-4e95-9a3c-5c9f1e56c732")
},
{
"_id": 4,
"a": UUID("d3c12e1c-c36e-25ed-7c3e-1e7f1e53c752"),
"b": "hello",
"c": null
},
{
"_id": 5,
"a": UUID("d73f181e-cdda-42b4-b844-4d6e172e9bc8"),
"b": "hello",
"c": []
}
{
"_id": 6,
"a": UUID("7eeddf21-b313-4a5c-81c2-c68915daa618"),
"b": "hello",
}
])

The index definition for the users collection specifies the following:

  • Dynamically index all the fields except fields named c.

  • Statically index field named c as the following types for sorting:

    • token

    • uuid

    • objectId

    • boolean

1{
2 "mappings": {
3 "dynamic": true,
4 "fields": {
5 "c": [
6 { "type": "token" },
7 { "type": "uuid" },
8 { "type": "objectId" },
9 { "type": "boolean" },
10 { "type": "number" }
11 ]
12 }
13 }
14}

For the preceding collection, Atlas Search creates an index named default with the specified mappings on the specified fields.

The following query shows how to run a compound query and sort the results by a date field. It uses the following operators:

  • wildcard operator to search for movie titles that begin with Summer.

  • near operator to search for movies that were released in and about five months before or after April 18, 2014.

    Note

    When you use pivot on a date field, its unit of measure is in milliseconds. Atlas Search calculates a score for each document based on how close the date field is to the specified date. To learn more, see near.

The query uses the following pipeline stages:

  • $search stage to search the title and released fields and then sort the results by the released field in descending order.

  • $limit stage to limit the output to 5 results.

  • $project stage to:

    • Exclude all fields except title and released.

    • Add a field named score.

1

Copy and paste the following query into the Query Editor, and then click the Search button in the Query Editor.

[
{
$search: {
"compound": {
"filter": [{
"wildcard": {
"query": "Summer*",
"path": "title"
}
}],
"must": [{
"near": {
"pivot": 13149000000,
"path": "released",
"origin": ISODate("2014-04-18T00:00:00.000+00:00")
}
}]
},
"sort": {
"released": -1,
"title": 1
}
}
}
]
SCORE: 0.348105788230896 _id: "573a13f0f29313caabddaf7a"
countries: Array
runtime: 104
cast: Array
...
title: "Summer Nights"
...
released: 2015-01-28T00:00:00.000+00:00
...
SCORE: 0.5917375683784485 _id: "573a13e6f29313caabdc673b"
plot: "25-year-old Iiris and Karoliina have been best friends since childhood…"
genres: Array
runtime: 90
...
title: "Summertime"
...
released: 2014-08-01T00:00:00.000+00:00
...
SCORE: 0.9934720396995544 _id: "573a13eff29313caabdd760c"
plot: "Erik Sparrow is one of the lucky ones. He's got a good job. He's in a …"
genres: Array
runtime: 86
...
title: "Summer of Blood"
...
released: 2014-04-17T00:00:00.000+00:00
...
SCORE: 0.15982933342456818 _id: "573a13cff29313caabd8ab74"
plot: "The story of an adult and a teenage couple during a brief summer holid…"
genres: Array
countries: Array
...
title: "Summer Games"
...
released: 2012-02-08T00:00:00.000+00:00
...
SCORE: 0.13038821518421173 _id: "573a13cef29313caabd87f4e"
plot: "Summer of Goliath is a documentary/fiction hybrid that narrates variou…"
genres: Array
runtime: 78
...
title: "Summer of Goliath"
...
released: 2011-07-08T00:00:00.000+00:00
...
SCORE: 0.08124520629644394 _id: "573a13c7f29313caabd7608d"
plot: "A student tries to fix a problem he accidentally caused in OZ, a digit…"
genres: Array
runtime: 114
...
title: "Summer Wars"
...
released: 2009-08-01T00:00:00.000+00:00
SCORE: 0.0711759403347969 _id: "573a13bbf29313caabd54ee6"
plot: "The life of a public school epitomized by disobedient student Jonah Ta…"
genres: Array
runtime: 30
...
title: "Summer Heights High"
...
released: 2008-11-09T00:00:00.000+00:00
...
SCORE: 0.06951779872179031 _id: "573a13bff29313caabd5f935"
plot: "On his spring break at the seaside, with his wife and his four year ol…"
genres: Array
runtime: 102
...
title: "Summer Holiday"
...
released: 2008-09-19T00:00:00.000+00:00
...
SCORE: 0.05834990739822388 _id: "573a13c0f29313caabd628ac"
plot: "Kochi Uehara is a fourth grade student living in the suburb of Tokyo. …"
genres: Array
runtime: 138
...
title: "Summer Days with Coo"
...
released: 2007-07-28T00:00:00.000+00:00
...
SCORE: 0.056174591183662415 _id: "573a13b8f29313caabd4c1d0"
fullplot: "Country girl Yu Hong leaves her village, her family and her lover to s…"
genres: Array
runtime: 158
...
title: "Summer Palace"
...
released: 2007-04-18T00:00:00.000+00:00
...
2

The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.

To run the query in mongosh:

1db.movies.aggregate([
2{
3 $search: {
4 "index": "default",
5 "compound": {
6 "filter": [{
7 "wildcard": {
8 "query": "Summer*",
9 "path": "title"
10 }
11 }],
12 "must": [{
13 "near": {
14 "pivot": 13149000000,
15 "path": "released",
16 "origin": ISODate("2014-04-18T00:00:00.000+00:00")
17 }
18 }]
19 },
20 "sort": {
21 "released": -1
22 }
23 }
24},
25{
26 $limit: 5
27},
28{
29 $project: {
30 "_id": 0,
31 "title": 1,
32 "released": 1,
33 "score": {
34 "$meta": "searchScore"
35 }
36 }
37}])
[
{
title: 'Summer Nights',
released: ISODate("2015-01-28T00:00:00.000Z"),
score: 0.348105788230896
},
{
title: 'Summertime',
released: ISODate("2014-08-01T00:00:00.000Z"),
score: 0.5917375683784485
},
{
title: 'Summer of Blood',
released: ISODate("2014-04-17T00:00:00.000Z"),
score: 0.9934720396995544
},
{
title: 'Summer Games',
released: ISODate("2012-02-08T00:00:00.000Z"),
score: 0.15982933342456818
},
{
title: 'Summer of Goliath',
released: ISODate("2011-07-08T00:00:00.000Z"),
score: 0.13038821518421173
}
]

In MongoDB Compass, configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.

Pipeline Stage
Query

$search

{
"index": "default",
"compound": {
"filter": [{
"wildcard": {
"query": "Summer*",
"path": "title"
}
}],
"must": [{
"near": {
"pivot": 13149000000,
"path": "released",
"origin": ISODate("2014-04-18T00:00:00.000+00:00")
}
}]
},
"sort": {
"released": -1
}
}

$limit

5

$project

{
_id: 0,
title: 1,
released: 1,
score: { $meta: "searchScore" }
}

If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $limit pipeline stage:

{
title: 'Summer Nights',
released: 2015-01-28T00:00:00.000+00:00,
score: 0.348105788230896
},
{
title: 'Summertime',
released: 2014-08-01T00:00:00.000+00:00,
score: 0.5917375683784485
},
{
title: 'Summer of Blood',
released: 2014-04-17T00:00:00.000+00:00,
score: 0.9934720396995544
},
{
title: 'Summer Games',
released: 2012-02-08T00:00:00.000+00:00,
score: 0.15982933342456818
},
{
title: 'Summer of Goliath',
released: 2011-07-08T00:00:00.000+00:00,
score: 0.13038821518421173
}
1
  1. Replace the contents of the Program.cs file with the following code.

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class SortByStrings
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22
    23 // declare data for compound query
    24 var originDate = new DateTime(2014, 04, 18, 0, 0, 0, DateTimeKind.Utc);
    25
    26 // define search options
    27 var searchOptions = new SearchOptions<MovieDocument>()
    28 {
    29 Sort = Builders<MovieDocument>.Sort.Descending(movie => movie.Released),
    30 IndexName = "default"
    31 };
    32
    33 // define and run pipeline
    34 var results = moviesCollection.Aggregate()
    35 .Search(Builders<MovieDocument>.Search.Compound()
    36 .Filter(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Summer*"))
    37 .Must(Builders<MovieDocument>.Search.Near(movie => movie.Released, originDate, 13149000000)), searchOptions)
    38 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    39 .Include(movie => movie.Released)
    40 .Include(movie => movie.Title)
    41 .Exclude(movie => movie.Id)
    42 .MetaSearchScore(movie => movie.Score))
    43 .Limit(5)
    44 .ToList();
    45
    46 // print results
    47 foreach (var movie in results)
    48 {
    49 Console.WriteLine(movie.ToJson());
    50 }
    51 }
    52}
    53
    54[BsonIgnoreExtraElements]
    55public class MovieDocument
    56{
    57 [BsonIgnoreIfDefault]
    58 public ObjectId Id { get; set; }
    59 public DateTime Released { get; set; }
    60 public string Title { get; set; }
    61 public double Score { get; set; }
    62}
  2. Specify the <connection-string>.

2
dotnet run Program.cs
{ "released" : ISODate("2015-01-28T00:00:00Z"), "title" : "Summer Nights", "score" : 0.348105788230896 }
{ "released" : ISODate("2014-08-01T00:00:00Z"), "title" : "Summertime", "score" : 0.59173756837844849 }
{ "released" : ISODate("2014-04-17T00:00:00Z"), "title" : "Summer of Blood", "score" : 0.99347203969955444 }
{ "released" : ISODate("2014-01-17T00:00:00Z"), "title" : "Summer in February", "score" : 0.62580311298370361 }
{ "released" : ISODate("2012-02-08T00:00:00Z"), "title" : "Summer Games", "score" : 0.15982933342456818 }
1
  1. Create a new file named sort-by-date.go and paste the following code:

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/v2/bson"
    9 "go.mongodb.org/mongo-driver/v2/mongo"
    10 "go.mongodb.org/mongo-driver/v2/mongo/options"
    11)
    12
    13func main() {
    14 // connect to your Atlas cluster
    15 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string"))
    16 if err != nil {
    17 panic(err)
    18 }
    19 defer client.Disconnect(context.TODO())
    20
    21 // set namespace
    22 collection := client.Database("sample_mflix").Collection("movies")
    23
    24 // define pipeline stages
    25 searchStage := bson.D{{Key: "$search", Value: bson.M{
    26 "index": "default",
    27 "compound": bson.M{
    28 "filter": bson.A{
    29 bson.M{
    30 "wildcard": bson.D{
    31 {Key: "path", Value: "title"},
    32 {Key: "query", Value: "Summer*"},
    33 }},
    34 },
    35 "must": bson.A{
    36 bson.M{
    37 "near": bson.M{
    38 "path": "released",
    39 "origin": time.Date(2014, time.April, 18, 0, 0, 0, 0, time.UTC),
    40 "pivot": 13149000000}},
    41 },
    42 },
    43 "sort": bson.D{{Key: "released", Value: -1}},
    44 }}}
    45
    46 limitStage := bson.D{{Key: "$limit", Value: 5}}
    47 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "_id", Value: 0}, {Key: "title", Value: 1}, {Key: "released", Value: 1}, {Key: "score", Value: bson.D{{Key: "$meta", Value: "searchScore"}}}}}}
    48
    49 // run pipeline
    50 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
    51 if err != nil {
    52 panic(err)
    53 }
    54
    55 // print results
    56 var results []bson.D
    57 if err = cursor.All(context.TODO(), &results); err != nil {
    58 panic(err)
    59 }
    60 for _, result := range results {
    61 fmt.Println(result)
    62 }
    63}
  2. Specify the <connection-string>.

2
go run sort-by-date.go
[{title Summer Nights} {released 1422403200000} {score 0.348105788230896}]
[{title Summertime} {released 1406851200000} {score 0.5917375683784485}]
[{title Summer of Blood} {released 1397692800000} {score 0.9934720396995544}]
[{title Summer Games} {released 1328659200000} {score 0.15982933342456818}]
[{title Summer of Goliath} {released 1310083200000} {score 0.13038821518421173}]
1
  1. Create a new file named SortByDate.java and paste the following code:

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11import org.bson.Document;
    12
    13import java.time.Instant;
    14import java.util.Date;
    15
    16public class SortByDate {
    17 public static void main( String[] args ) {
    18 // define query
    19 Document agg =
    20 new Document("$search",
    21 new Document("index", "default")
    22 .append("compound",
    23 new Document("filter", Arrays.asList(new Document("wildcard",
    24 new Document("query", "Summer*")
    25 .append("path", "title"))))
    26 .append("must", Arrays.asList(new Document("near",
    27 new Document("pivot", 13149000000L)
    28 .append("path", "released")
    29 .append("origin", Date.from(Instant.parse("2014-04-18T00:00:00.000+00:00")))))))
    30 .append("sort", new Document("released", -1)));
    31
    32 // specify connection
    33 String uri = "<connection-string>";
    34
    35 // establish connection and set namespace
    36 try (MongoClient mongoClient = MongoClients.create(uri)) {
    37 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    38 MongoCollection<Document> collection = database.getCollection("movies");
    39 // run query and print results
    40 collection.aggregate(Arrays.asList(agg,
    41 limit(5),
    42 project(fields(exclude("_id"), include("title"), include("released"), computed("score", new Document("$meta", "searchScore"))))))
    43 .forEach(doc -> System.out.println(doc.toJson()));
    44 }
    45 }
    46}

    Note

    To run the sample code in your Maven environment, add the following code above the import statements in your file.

    package com.mongodb.drivers;
  2. Specify the <connection-string>.

2
javac SortByDate.java
java SortByDate
{"title": "Summer Nights", "released": {"$date": "2015-01-28T00:00:00Z"}, "score": 0.348105788230896}
{"title": "Summertime", "released": {"$date": "2014-08-01T00:00:00Z"}, "score": 0.5917375683784485}
{"title": "Summer of Blood", "released": {"$date": "2014-04-17T00:00:00Z"}, "score": 0.9934720396995544}
{"title": "Summer Games", "released": {"$date": "2012-02-08T00:00:00Z"}, "score": 0.15982933342456818}
{"title": "Summer of Goliath", "released": {"$date": "2011-07-08T00:00:00Z"}, "score": 0.13038821518421173}
1
  1. Create a new file named SortByDate.kt and paste the following code:

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7import java.time.Instant
    8import java.util.*
    9
    10fun main() {
    11 // establish connection and set namespace
    12 val uri = "<connection-string>"
    13 val mongoClient = MongoClient.create(uri)
    14 val database = mongoClient.getDatabase("sample_mflix")
    15 val collection = database.getCollection<Document>("movies")
    16
    17 runBlocking {
    18 // define query
    19 val agg = Document(
    20 "\$search",
    21 Document("index", "default")
    22 .append(
    23 "compound",
    24 Document(
    25 "filter", listOf(
    26 Document(
    27 "wildcard",
    28 Document("query", "Summer*")
    29 .append("path", "title")
    30 )
    31 )
    32 )
    33 .append(
    34 "must", listOf(
    35 Document(
    36 "near",
    37 Document("pivot", 13149000000L)
    38 .append("path", "released")
    39 .append("origin", Date.from(Instant.parse("2014-04-18T00:00:00.000+00:00")))
    40 )
    41 )
    42 )
    43 )
    44 .append("sort", Document("released", -1))
    45 )
    46
    47 // run query and print results
    48 val resultsFlow = collection.aggregate<Document>(
    49 listOf(
    50 agg,
    51 limit(5),
    52 project(fields(
    53 excludeId(),
    54 include("title", "released"),
    55 computed("score", Document("\$meta", "searchScore"))
    56 ))
    57 )
    58 )
    59 resultsFlow.collect { println(it) }
    60 }
    61 mongoClient.close()
    62}
  2. Specify the <connection-string>.

2
kotlin SortByDate.kt
Document{{title=Summer Nights, released=Tue Jan 27 19:00:00 EST 2015, score=0.348105788230896}}
Document{{title=Summertime, released=Thu Jul 31 20:00:00 EDT 2014, score=0.5917375683784485}}
Document{{title=Summer of Blood, released=Wed Apr 16 20:00:00 EDT 2014, score=0.9934720396995544}}
Document{{title=Summer Games, released=Tue Feb 07 19:00:00 EST 2012, score=0.15982933342456818}}
Document{{title=Summer of Goliath, released=Thu Jul 07 20:00:00 EDT 2011, score=0.13038821518421173}}
1
  1. Create a new file named sort-by-date.js and paste the following code:

    1const { MongoClient } = require("mongodb");
    2
    3// Replace the uri string with your MongoDB deployments connection string.
    4const uri =
    5 "<connection-string>";
    6
    7const client = new MongoClient(uri);
    8
    9async function run() {
    10 try {
    11 await client.connect();
    12
    13 // set namespace
    14 const database = client.db("sample_mflix");
    15 const coll = database.collection("movies");
    16
    17 // define pipeline
    18 const agg = [
    19 {$search: {
    20 index: "default",
    21 compound: {
    22 filter: {wildcard: {query: "Summer*", path: "title"}},
    23 must: [{near: {path: "released", origin: new Date("2014-04-18T00:00:00.000Z"), pivot: 13149000000}}]
    24 },
    25 sort: { released: -1 }
    26 }},
    27 {$limit: 5},
    28 {$project: {_id: 0, title: 1, released: 1, score: {$meta: "searchScore"}}}
    29 ];
    30
    31 // run pipeline
    32 const result = await coll.aggregate(agg);
    33
    34 // print results
    35 await result.forEach((doc) => console.log(doc));
    36
    37 } finally {
    38 await client.close();
    39 }
    40}
    41run().catch(console.dir);
  2. Specify the <connection-string>.

2
node sort-by-date.js
{
title: 'Summer Nights',
released: 2015-01-28T00:00:00.000Z,
score: 0.348105788230896
}
{
title: 'Summertime',
released: 2014-08-01T00:00:00.000Z,
score: 0.5917375683784485
}
{
title: 'Summer of Blood',
released: 2014-04-17T00:00:00.000Z,
score: 0.9934720396995544
}
{
title: 'Summer Games',
released: 2012-02-08T00:00:00.000Z,
score: 0.15982933342456818
}
{
title: 'Summer of Goliath',
released: 2011-07-08T00:00:00.000Z,
score: 0.13038821518421173
}
1
  1. Create a new file named sort-by-date.py and paste the following code:

    1import datetime
    2import pymongo
    3
    4# connect to your Atlas cluster
    5client = pymongo.MongoClient('<connection-string>')
    6
    7# define pipeline
    8pipeline = [
    9 {'$search': {
    10 'index': 'default',
    11 'compound': {
    12 'filter': {'wildcard': {'query': 'Summer*', 'path': 'title'}},
    13 'must': {'near': {
    14 "path": "released",
    15 "origin": datetime.datetime(2014, 4, 18, 0, 0, 0, 0),
    16 "pivot": 13149000000
    17 }}},
    18 'sort': { 'released': -1 }}},
    19 {'$limit': 5},
    20 {'$project': {'_id': 0, 'title': 1, 'released': 1, 'score': {'$meta': 'searchScore'}}}
    21]
    22
    23# run pipeline
    24result = client['sample_mflix']['movies'].aggregate(pipeline)
    25
    26# print results
    27for i in result:
    28 print(i)
  2. Specify the <connection-string>.

2
python sort-by-date.py
{'title': 'Summer Nights', 'released': datetime.datetime(2015, 1, 28, 0, 0), 'score': 0.348105788230896}
{'title': 'Summertime', 'released': datetime.datetime(2014, 8, 1, 0, 0), 'score': 0.5917375683784485}
{'title': 'Summer of Blood', 'released': datetime.datetime(2014, 4, 17, 0, 0), 'score': 0.9934720396995544}
{'title': 'Summer Games', 'released': datetime.datetime(2012, 2, 8, 0, 0), 'score': 0.15982933342456818}
{'title': 'Summer of Goliath', 'released': datetime.datetime(2011, 7, 8, 0, 0), 'score': 0.13038821518421173}

The following query shows how to sort the results by a numeric field. It uses the range operator to search for movies that have won 10 or more awards and then sorts the results by the numeric field value in descending order.

The query uses the following pipeline stages:

  • $search stage to search the awards.wins field and sort the results in descending order.

  • $limit stage to limit the output to 5 results.

  • $project stage to exclude all fields except title and awards.wins.

1

Copy and paste the following query into the Query Editor, and then click the Search button in the Query Editor.

[
{
"$search": {
"range": {
"path": "awards.wins",
"gte": 10
},
"sort": {
"awards.wins": -1,
}
}
}
]
SCORE: 1 _id: "573a13d5f29313caabd9cae7"
fullplot: "Based on an incredible true story of one man's fight for survival and …"
imdb: Object
...
year: 2013
...
awards: Object
wins: 267
...
...
SCORE: 1 _id: "573a13c7f29313caabd74a4d"
fullplot: "Dr. Ryan Stone (Sandra Bullock) is a brilliant medical engineer on her…"
imdb: Object
...
year: 2013
...
awards: Object
wins: 231
...
...
SCORE: 1 _id: "573a13cbf29313caabd808d2"
fullplot: "Dr. Ryan Stone (Sandra Bullock) is a brilliant medical engineer on her…"
imdb: Object
...
year: 2013
...
awards: Object
wins: 231
...
...
SCORE: 1 _id: “573a13dff29313caabdb7adb”"
fullplot: "Actor Riggan Thomson is most famous for his movie role from over twent…"
imdb: Object
...
year: 2014
...
awards: Object
wins: 210
...
...
SCORE: 1 _id: "573a13bef29313caabd5c06c"
plot: "The life of Mason, from early childhood to his arrival at college."
imdb: Object
...
runtime: 165
...
awards: Object
wins: 185
...
...
SCORE: 1 _id: "573a139ef29313caabcfbd6a"
fullplot: "While Frodo & Sam continue to approach Mount Doom to destroy the One R…"
imdb: Object
...
year: 2003
...
awards: Object
wins: 175
...
...
SCORE: 1 _id: "573a13b5f29313caabd447f5"
plot: "In rural Texas, welder and hunter Llewelyn Moss discovers the remains …"
imdb: Object
...
year: 2007
...
awards: Object
wins: 172
...
...
SCORE: 1 _id: "573a13c3f29313caabd68d9f"
plot: "On a fall night in 2003, Harvard undergrad and computer programming ge…"
imdb: Object
...
year: 2010
...
awards: Object
wins: 171
...
...
SCORE: 1 _id: "573a13c5f29313caabd6ee61"
fullplot: "Dom Cobb is a skilled thief, the absolute best in the dangerous art of…"
imdb: Object
...
year: 2010
...
awards: Object
wins: 162
...
...
SCORE: 1 _id: "573a13bdf29313caabd58fd3"
plot: "The story of Jamal Malik, an 18 year-old orphan from the slums of Mumb…"
imdb: Object
...
year: 2008
...
awards: Object
wins: 161
...
...
2

The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.

To run the query in mongosh:

1db.movies.aggregate([
2 {
3 "$search": {
4 "range": {
5 "path": "awards.wins",
6 "gte": 10
7 },
8 "sort": {
9 "awards.wins": -1,
10 }
11 }
12 },
13 {
14 $limit: 5
15 },
16 {
17 "$project": {
18 "_id": 0,
19 "title": 1,
20 "awards.wins": 1
21 }
22 }
23])
[
{
title: '12 Years a Slave',
awards: { wins: 267 }
},
{
title: 'Gravity',
awards: { wins: 231 }
},
{
title: 'Gravity',
awards: { wins: 231 }
},
{
title: 'Birdman: Or (The Unexpected Virtue of Ignorance)',
awards: { wins: 210 }
},
{
title: 'Boyhood',
awards: { wins: 185 }
}
]

In MongoDB Compass, configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.

Pipeline Stage
Query

$search

{
index: "default",
"range": {
"path": "awards.wins",
"gte": 10
},
"sort": {
"awards.wins": -1,
}
}

$limit

5

$project

{
title: 1,
released: 1,
year: 1
}

If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $limit pipeline stage:

[
{
title: '12 Years a Slave',
awards: { wins: 267 }
},
{
title: 'Gravity',
awards: { wins: 231 }
},
{
title: 'Gravity',
awards: { wins: 231 }
},
{
title: 'Birdman: Or (The Unexpected Virtue of Ignorance)',
awards: { wins: 210 }
},
{
title: 'Boyhood',
awards: { wins: 185 }
}
]
1
  1. In your project, replace the contents of the Program.cs file with the following code.

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class SortByNumbers
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define search options
    23 var searchOptions = new SearchOptions<MovieDocument>()
    24 {
    25 Sort = Builders<MovieDocument>.Sort.Descending(movies => movies.Awards.Wins),
    26 IndexName = "default"
    27 };
    28
    29 // define and run pipeline
    30 var results = moviesCollection.Aggregate()
    31 .Search(
    32 Builders<MovieDocument>.Search.Range(movie => movie.Awards.Wins, SearchRangeBuilder.Gte(10)), searchOptions)
    33 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    34 .Exclude(movie => movie.Id)
    35 .Include(movie => movie.Title)
    36 .Include(movie => movie.Awards.Wins))
    37 .Limit(5)
    38 .ToList();
    39
    40 // print results
    41 foreach (var movie in results)
    42 {
    43 Console.WriteLine(movie.ToJson());
    44 }
    45 }
    46}
    47
    48[BsonIgnoreExtraElements]
    49public class MovieDocument
    50{
    51 [BsonIgnoreIfDefault]
    52 public ObjectId Id { get; set; }
    53 public string Title { get; set; }
    54 public Award Awards { get; set; }
    55}
    56
    57public class Award
    58{
    59 [BsonIgnoreIfDefault]
    60 public int Wins { get; set; }
    61}
  2. Specify the <connection-string>.

2
dotnet run Program.cs
{ "title" : "12 Years a Slave", "awards" : { "wins" : 267 } }
{ "title" : "Gravity", "awards" : { "wins" : 231 } }
{ "title" : "Gravity", "awards" : { "wins" : 231 } }
{ "title" : "Birdman: Or (The Unexpected Virtue of Ignorance)", "awards" : { "wins" : 210 } }
{ "title" : "Boyhood", "awards" : { "wins" : 185 } }
1
  1. Create a new file named sort-by-numbers.go and paste the following code:

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6
    7 "go.mongodb.org/mongo-driver/v2/bson"
    8 "go.mongodb.org/mongo-driver/v2/mongo"
    9 "go.mongodb.org/mongo-driver/v2/mongo/options"
    10)
    11
    12func main() {
    13 // connect to your Atlas cluster
    14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>"))
    15 if err != nil {
    16 panic(err)
    17 }
    18 defer client.Disconnect(context.TODO())
    19
    20 // set namespace
    21 collection := client.Database("sample_mflix").Collection("movies")
    22
    23 // define pipeline stages
    24 searchStage := bson.D{{Key: "$search", Value: bson.D{
    25 {Key: "index", Value: "default"},
    26 {Key: "range", Value: bson.D{
    27 {Key: "path", Value: "awards.wins"},
    28 {Key: "gte", Value: 10},
    29 }},
    30 {Key: "sort", Value: bson.D{{Key: "awards.wins", Value: -1}}},
    31 }}}
    32 limitStage := bson.D{{Key: "$limit", Value: 5}}
    33 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "title", Value: 1}, {Key: "awards.wins", Value: 1}, {Key: "_id", Value: 0}}}}
    34
    35 // run pipeline
    36 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
    37 if err != nil {
    38 panic(err)
    39 }
    40
    41 // print results
    42 var results []bson.D
    43 if err = cursor.All(context.TODO(), &results); err != nil {
    44 panic(err)
    45 }
    46 for _, result := range results {
    47 fmt.Println(result)
    48 }
    49}
  2. Specify the <connection-string>.

2
go run sort-by-numbers.go
[{title 12 Years a Slave} {awards [{wins 267}]}]
[{title Gravity} {awards [{wins 231}]}]
[{title Gravity} {awards [{wins 231}]}]
[{title Birdman: Or (The Unexpected Virtue of Ignorance)} {awards [{wins 210}]}]
[{title Boyhood} {awards [{wins 185}]}]
1
  1. Create a new file named SortByNumbers.java and paste the following code:

    1import java.util.Arrays;
    2
    3import static com.mongodb.client.model.Aggregates.limit;
    4import static com.mongodb.client.model.Aggregates.project;
    5import static com.mongodb.client.model.Projections.excludeId;
    6import static com.mongodb.client.model.Projections.fields;
    7import static com.mongodb.client.model.Projections.include;
    8import com.mongodb.client.MongoClient;
    9import com.mongodb.client.MongoClients;
    10import com.mongodb.client.MongoCollection;
    11import com.mongodb.client.MongoDatabase;
    12import org.bson.Document;
    13
    14public class SortByNumbers {
    15 public static void main( String[] args ) {
    16 // define query
    17 Document agg =
    18 new Document("$search",
    19 new Document("index", "default")
    20 .append("range",
    21 new Document("path", "awards.wins")
    22 .append("gte", 10L))
    23 .append("sort",
    24 new Document("awards.wins", -1L)));
    25
    26 // specify connection
    27 String uri = "<connection-string>";
    28
    29 // establish connection and set namespace
    30 try (MongoClient mongoClient = MongoClients.create(uri)) {
    31 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    32 MongoCollection<Document> collection = database.getCollection("movies");
    33
    34 // run query and print results
    35 collection.aggregate(Arrays.asList(agg,
    36 limit(5),
    37 project(fields(excludeId(), include("title"), include("awards.wins")))))
    38 .forEach(doc -> System.out.println(doc.toJson()));
    39 }
    40 }
    41}

    Note

    To run the sample code in your Maven environment, add the following code above the import statements in your file.

    package com.mongodb.drivers;
  2. Specify the <connection-string>.

2
javac SortByNumbers.java
java SortByNumbers
{"title": "12 Years a Slave", "awards": {"wins": 267}}
{"title": "Gravity", "awards": {"wins": 231}}
{"title": "Gravity", "awards": {"wins": 231}}
{"title": "Birdman: Or (The Unexpected Virtue of Ignorance)", "awards": {"wins": 210}}
{"title": "Boyhood", "awards": {"wins": 185}}
1
  1. Create a new file named SortByNumbers.kt and paste the following code:

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12 val database = mongoClient.getDatabase("sample_mflix")
    13 val collection = database.getCollection<Document>("movies")
    14
    15 runBlocking {
    16 // define query
    17 val agg = Document(
    18 "\$search",
    19 Document("index", "default")
    20 .append(
    21 "range",
    22 Document("path", "awards.wins")
    23 .append("gte", 10L)
    24 )
    25 .append(
    26 "sort",
    27 Document("awards.wins", -1L)
    28 )
    29 )
    30
    31 // run query and print results
    32 val resultsFlow = collection.aggregate<Document>(
    33 listOf(
    34 agg,
    35 limit(5),
    36 project(fields(
    37 excludeId(),
    38 include("title", "awards.wins")
    39 ))
    40 )
    41 )
    42 resultsFlow.collect { println(it) }
    43 }
    44 mongoClient.close()
    45}
  2. Specify the <connection-string>.

2
kotlin SortByNumbers.kt
Document{{title=12 Years a Slave, awards=Document{{wins=267}}}}
Document{{title=Gravity, awards=Document{{wins=231}}}}
Document{{title=Gravity, awards=Document{{wins=231}}}}
Document{{title=Birdman: Or (The Unexpected Virtue of Ignorance), awards=Document{{wins=210}}}}
Document{{title=Boyhood, awards=Document{{wins=185}}}}
1
  1. Create a new file named sort-by-numbers.js and paste the following code:

    1const { MongoClient } = require("mongodb");
    2
    3// Replace the uri string with your MongoDB deployments connection string.
    4const uri =
    5 "<connection-string>";
    6
    7const client = new MongoClient(uri);
    8
    9async function run() {
    10 try {
    11 await client.connect();
    12
    13 // set namespace
    14 const database = client.db("sample_mflix");
    15 const coll = database.collection("movies");
    16
    17 // define pipeline
    18 const agg = [
    19 {
    20 '$search': {
    21 'index': 'default',
    22 'range': {
    23 'path': 'awards.wins',
    24 'gte': 10
    25 },
    26 'sort': {
    27 'awards.wins': -1
    28 }
    29 }
    30 }, {
    31 '$limit': 5
    32 }, {
    33 '$project': {
    34 '_id': 0,
    35 'title': 1,
    36 'awards.wins': 1
    37 }
    38 }
    39 ];
    40
    41 // run pipeline
    42 const result = await coll.aggregate(agg);
    43
    44 // print results
    45 await result.forEach((doc) => console.log(doc));
    46
    47 } finally {
    48 await client.close();
    49 }
    50}
    51run().catch(console.dir);
  2. Specify the <connection-string>.

2
node sort-by-numbers.js
{ title: '12 Years a Slave', awards: { wins: 267 } }
{ title: 'Gravity', awards: { wins: 231 } }
{ title: 'Gravity', awards: { wins: 231 } }
{
title: 'Birdman: Or (The Unexpected Virtue of Ignorance)',
awards: { wins: 210 }
}
{ title: 'Boyhood', awards: { wins: 185 } }
1
  1. Create a new file named sort-by-numbers.py and paste the following code:

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {
    9 '$search': {
    10 'index': 'default',
    11 'range': {
    12 'path': 'awards.wins',
    13 'gte': 10
    14 },
    15 'sort': {
    16 'awards.wins': -1
    17 }
    18 }
    19 }, {
    20 '$limit': 5
    21 }, {
    22 '$project': {'_id': 0, 'title': 1, 'awards.wins': 1
    23 }
    24 }
    25]
    26
    27# run pipeline
    28result = client['sample_mflix']['movies'].aggregate(pipeline)
    29
    30# print results
    31for i in result:
    32 print(i)
  2. Specify the <connection-string>.

2
python sort-by-numbers.py
{'title': '12 Years a Slave', 'awards': {'wins': 267}}
{'title': 'Gravity', 'awards': {'wins': 231}}
{'title': 'Gravity', 'awards': {'wins': 231}}
{'title': 'Birdman: Or (The Unexpected Virtue of Ignorance)', 'awards': {'wins': 210}}
{'title': 'Boyhood', 'awards': {'wins': 185}}

The following query on the sample_mflix.movies namespace uses the $search stage to do the following:

  • Search for movies that have the term country in the title.

  • Sort the results in ascending order using sort option.

The query uses the $limit stage to limit the output to 5 documents. It also uses the $project stage to do the following:

  • Omit all fields except title in the results.

  • Add a field named score.

db.movies.aggregate([
{
"$search": {
"text": {
"path": "title",
"query": "country"
},
"sort": {
"title": 1
}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 0,
"title": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ title: 'A Country Called Home', score: 2.536633253097534 },
{ title: 'A Month in the Country', score: 2.258953094482422 },
{ title: 'A Quiet Place in the Country', score: 2.0360684394836426 },
{ title: 'A Sunday in the Country', score: 2.258953094482422 },
{ title: 'Another Country', score: 3.3635599613189697 }
]

The following query shows how to query and sort the results by a string field. It searches for titles that begin with Prance or Prince and sorts the results by the title field in ascending order.

The query uses the following pipeline stages:

  • $search to search the title field using the should clause with the wildcard operator to search for titles that begin with Prance and Prince. The query also specifies that results must be sorted by the title field in ascending order.

  • $limit stage to limit the output to 5 results.

  • $project stage to:

    • Exclude all fields except title.

    • Add a field named score.

[
{
$search: {
"compound": {
"should": [{
"wildcard": {
"query": ["Prance*"],
"path": "title",
"allowAnalyzedField": true
}
},
{
"wildcard": {
"query": ["Prince*"],
"path": "title",
"allowAnalyzedField": true
}
}]
},
"sort": {
"title": 1
}
}
}
]
SCORE: 1 _id: "573a1398f29313caabceb98e"
plot: "A farm girl nurses a wounded reindeer she believes is one of Santa's, …"
genres: Array
runtime: 103
...
title: "Prancer"
...
SCORE: 1 _id: "573a13a5f29313caabd14f54"
plot: "Preteen brothers from a broken marriage live with their mother, Denise…"
genres: Array
runtime: 91
...
title: "Prancer Returns"
...
SCORE: 1 _id: "573a13f5f29313caabde3755"
plot: "A troubled teenager attempts to conquer the love of his life by becomi…"
genres: Array
runtime: 78
...
title: "Prince"
...
SCORE: 1 _id: "573a13d8f29313caabda665f"
fullplot: "Two highway road workers spend the summer of 1988 away from their city…"
imdb: Object
year: 2013
...
title: "Prince Avalanche"
...
SCORE: 1 _id: "573a13bdf29313caabd5898a"
plot: "A New York street drama about the lives of immigrants in America seeki…"
genres: Array
runtime: 70
...
title: "Prince of Broadway"
...
SCORE: 1 _id: "573a1398f29313caabcea967"
fullplot: "A sinister secret has been kept in the basement of an abandoned Los An…"
imdb: Object
year: 1987
...
title: "Prince of Darkness"
...
SCORE: 1 _id: "573a1393f29313caabcde40d"
plot: "An unscrupulous agent for the Borgias suffers a change of heart when a…"
genres: Array
runtime: 107
...
title: "Princess of Foxes"
...
SCORE: 1 _id: "573a13b5f29313caabd43816"
plot: "A young fugitive prince and princess must stop a villain who unknowing…"
genres: Array
runtime: 116
...
title: "Prince of Persia: The Sands of Time"
...
SCORE: 1 _id: "573a1397f29313caabce8081"
plot: "A New York City narcotics detective reluctantly agrees to cooperate wi…"
genres: Array
runtime: 167
...
title: "Prince of the City"
...
SCORE: 1 _id: "573a13a2f29313caabd0a767"
plot: "Six old-style funny silhouetted fairy tales for not so-old-style peopl…"
genres: Array
runtime: 70
...
title: "Princes and Princesses"
...

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.

1db.movies.aggregate([{
2 $search: {
3 "index": "default",
4 "compound": {
5 "should": [{
6 "wildcard": {
7 "query": ["Prance*"],
8 "path": "title",
9 "allowAnalyzedField": true
10 }
11 },
12 {
13 "wildcard": {
14 "query": ["Prince*"],
15 "path": "title",
16 "allowAnalyzedField": true
17 }
18 }]
19 },
20 "sort": {
21 "title": 1
22 }
23 }},
24 {
25 $limit: 5
26 },
27 {
28 $project: {
29 "_id": 0,
30 "title": 1,
31 "score": { "$meta": "searchScore" }
32 }
33 }
34])
[
{ title: 'Prancer', score: 1 },
{ title: 'Prancer Returns', score: 1 },
{ title: 'Prince', score: 1 },
{ title: 'Prince Avalanche', score: 1 },
{ title: 'Prince of Broadway', score: 1 }
]

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

Pipeline Stage
Query

$search

{
compound: {
should: [{
wildcard: {
query: "Prance*",
path: 'title',
allowAnalyzedField: true
}},
{
wildcard: {
query: "Prince*",
path: 'title',
allowAnalyzedField: true
}
}]
},
sort: {
title: 1
}
}

$limit

5

$project

{
_id: 0,
title: 1,
score: { $meta: "searchScore" }
}

If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $project pipeline stage:

{
title: 'Prancer',
score: 1
},
{
title: 'Prancer Returns',
score: 1
},
{
title: 'Prince',
score: 1
},
{
title: 'Prince Avalanche',
score: 1
},
{
title: 'Prince of Boradway',
score: 1
}

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The code example performs the following tasks:

  • Imports mongodb packages and dependencies.

  • Establishes a connection to your Atlas cluster.

  • The query uses the following pipeline stages:

    • $search to search the title field using the should clause with the wildcard operator to search for titles that begin with Prance and Prince. The query also specifies that results must be sorted by the title field in ascending order.

    • $limit stage to limit the output to 5 results.

    • $project stage to:

      • Exclude all fields except title.

      • Add a field named score.

  • Iterates over the cursor to print the documents that match the query.

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class SortByStrings
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our MovieDocument
14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
21
22 // define search options
23 var searchOptions = new SearchOptions<MovieDocument>()
24 {
25 Sort = Builders<MovieDocument>.Sort.Ascending(movie => movie.Title),
26 IndexName = "default"
27 };
28
29 // define and run pipeline
30 var results = moviesCollection.Aggregate()
31 .Search(Builders<MovieDocument>.Search.Compound()
32 .Should(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Prance*", true ))
33 .Should(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Prince*" )), searchOptions)
34 .Project<MovieDocument>(Builders<MovieDocument>.Projection
35 .Include(movie => movie.Title)
36 .Exclude(movie => movie.Id)
37 .MetaSearchScore(movie => movie.Score))
38 .Limit(5)
39 .ToList();
40
41 // print results
42 foreach (var movie in results)
43 {
44 Console.WriteLine(movie.ToJson());
45 }
46 }
47}
48
49[BsonIgnoreExtraElements]
50public class MovieDocument
51{
52 [BsonIgnoreIfDefault]
53 public ObjectId Id { get; set; }
54 public string Title { get; set; }
55 public double Score { get; set; }
56}
{ "title" : "Prancer", "score" : 1.0 }
{ "title" : "Prancer Returns", "score" : 1.0 }
{ "title" : "Prince", "score" : 1.0 }
{ "title" : "Prince Avalanche", "score" : 1.0 }
{ "title" : "Prince of Broadway", "score" : 1.0 }

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The code example performs the following tasks:

  • Imports mongodb packages and dependencies.

  • Establishes a connection to your Atlas cluster.

  • Iterates over the cursor to print the documents that match the query.

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/v2/bson"
8 "go.mongodb.org/mongo-driver/v2/mongo"
9 "go.mongodb.org/mongo-driver/v2/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("sample_mflix").Collection("movies")
22
23 // define pipeline stages
24 searchStage := bson.D{{Key: "$search", Value: bson.M{
25 "index": "default",
26 "compound": bson.M{
27 "should": bson.A{
28 bson.M{
29 "wildcard": bson.D{
30 {Key: "path", Value: "title"},
31 {Key: "query", Value: "Prance*"},
32 {Key: "allowAnalyzedField", Value: true},
33 }},
34 bson.M{
35 "wildcard": bson.D{
36 {Key: "path", Value: "title"},
37 {Key: "query", Value: "Prince*"},
38 {Key: "allowAnalyzedField", Value: true},
39 }},
40 },
41 },
42 "sort": bson.D{{Key: "title", Value: 1}},
43 }}}
44
45 limitStage := bson.D{{Key: "$limit", Value: 5}}
46 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "title", Value: 1}, {Key: "_id", Value: 0}, {Key: "score", Value: bson.D{{Key: "$meta", Value: "searchScore"}}}}}}
47
48 // run pipeline
49 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
50 if err != nil {
51 panic(err)
52 }
53
54 // print results
55 var results []bson.D
56 if err = cursor.All(context.TODO(), &results); err != nil {
57 panic(err)
58 }
59 for _, result := range results {
60 fmt.Println(result)
61 }
62}
[{title Prancer} {score 1}]
[{title Prancer Returns} {score 1}]
[{title Prince} {score 1}]
[{title Prince Avalanche} {score 1}]
[{title Prince of Broadway} {score 1}]

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The code example performs the following tasks:

  • Imports mongodb packages and dependencies.

  • Establishes a connection to your Atlas cluster.

  • Iterates over the cursor to print the documents that match the query.

1import java.util.Arrays;
2import java.util.List;
3
4import static com.mongodb.client.model.Aggregates.limit;
5import static com.mongodb.client.model.Aggregates.project;
6import static com.mongodb.client.model.Projections.*;
7import com.mongodb.client.MongoClient;
8import com.mongodb.client.MongoClients;
9import com.mongodb.client.MongoCollection;
10import com.mongodb.client.MongoDatabase;
11import org.bson.Document;
12
13import java.util.Date;
14
15public class SortByString {
16 public static void main( String[] args ) {
17 // define clause
18 List<Document> shouldClause =
19 List.of(
20 new Document(
21 "wildcard",
22 new Document("query", "Prance*")
23 .append("path", "title")
24 .append("allowAnalyzedField", true)),
25 new Document(
26 "wildcard",
27 new Document("query", "Prince*")
28 .append("path", "title")
29 .append("allowAnalyzedField", true)));
30
31 // define query
32 Document agg =
33 new Document(
34 "$search",
35 new Document("index", "default")
36 .append("compound",
37 new Document("should", shouldClause))
38 .append("sort", new Document("title", 1L)));
39
40 // specify connection
41 String uri = "<connection-string>";
42
43 // establish connection and set namespace
44 try (MongoClient mongoClient = MongoClients.create(uri)) {
45 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
46 MongoCollection<Document> collection = database.getCollection("movies");
47
48 // run query and print results
49 collection.aggregate(Arrays.asList(agg,
50 limit(5),
51 project(fields(excludeId(), include("title"), computed("score", new Document("$meta", "searchScore"))))))
52 .forEach(doc -> System.out.println(doc.toJson()));
53 }
54 }
55}
{"title": "Prancer", "score": 1.0}
{"title": "Prancer Returns", "score": 1.0}
{"title": "Prince", "score": 1.0}
{"title": "Prince Avalanche", "score": 1.0}
{"title": "Prince of Broadway", "score": 1.0}

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The code example performs the following tasks:

  • Imports mongodb packages and dependencies.

  • Establishes a connection to your Atlas cluster.

  • Prints the documents that match the query from the AggregateFlow instance.

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // establish connection and set namespace
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12 val database = mongoClient.getDatabase("sample_mflix")
13 val collection = database.getCollection<Document>("movies")
14
15 runBlocking {
16 // define clause
17 val shouldClause = listOf(
18 Document("wildcard", Document("query", "Prance*")
19 .append("path", "title")
20 .append("allowAnalyzedField", true)),
21 Document("wildcard", Document("query", "Prince*")
22 .append("path", "title")
23 .append("allowAnalyzedField", true))
24 )
25
26 // define query
27 val agg = Document(
28 "\$search",
29 Document("index", "default")
30 .append(
31 "compound",
32 Document("should", shouldClause)
33 )
34 .append("sort", Document("title", 1L))
35 )
36
37 // run query and print results
38 val resultsFlow = collection.aggregate<Document>(
39 listOf(
40 agg,
41 limit(5),
42 project(fields(
43 excludeId(),
44 include("title"),
45 computed("score", Document("\$meta", "searchScore"))
46 ))
47 )
48 )
49 resultsFlow.collect { println(it) }
50 }
51 mongoClient.close()
52}
Document{{title=Prancer, score=1.0}}
Document{{title=Prancer Returns, score=1.0}}
Document{{title=Prince, score=1.0}}
Document{{title=Prince Avalanche, score=1.0}}
Document{{title=Prince of Broadway, score=1.0}}

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The code example performs the following tasks:

  • Imports mongodb, MongoDB's Node.js driver.

  • Creates an instance of the MongoClient class to establish a connection to your Atlas cluster.

  • The query uses the following pipeline stages:

    • $search to search the title field using the should clause with the wildcard operator to search for titles that begin with Prance and Prince. The query also specifies that results must be sorted by the title field in ascending order.

    • $limit stage to limit the output to 5 results.

    • $project stage to:

      • Exclude all fields except title.

      • Add a field named score.

  • Iterates over the cursor to print the documents that match the query.

1const { MongoClient } = require("mongodb");
2
3// Replace the uri string with your MongoDB deployments connection string.
4const uri =
5 "<connection-string>";
6
7const client = new MongoClient(uri);
8
9async function run() {
10 try {
11 await client.connect();
12
13 // set namespace
14 const database = client.db("sample_mflix");
15 const coll = database.collection("movies");
16
17 // define pipeline
18 const agg = [
19 {
20 '$search': {
21 'compound': {
22 'should': [
23 {
24 'wildcard': {
25 'query': [
26 'Prance*'
27 ],
28 'path': 'title',
29 'allowAnalyzedField': true
30 }
31 }, {
32 'wildcard': {
33 'query': [
34 'Prince*'
35 ],
36 'path': 'title',
37 'allowAnalyzedField': true
38 }
39 }
40 ]
41 },
42 'sort': { 'title': 1 }
43 }
44 }, {
45 '$limit': 5
46 }, {
47 '$project': {'_id': 0, 'title': 1, 'score': {'$meta': 'searchScore'}
48 }
49 }
50 ];
51
52 // run pipeline
53 const result = await coll.aggregate(agg);
54
55 // print results
56 await result.forEach((doc) => console.log(doc));
57
58 } finally {
59 await client.close();
60 }
61}
62run().catch(console.dir);
{ title: 'Prancer', score: 1 }
{ title: 'Prancer Returns', score: 1 }
{ title: 'Prince', score: 1 }
{ title: 'Prince Avalanche', score: 1 }
{ title: 'Prince of Broadway', score: 1 }

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The following code example:

  • Imports pymongo, MongoDB's Python driver, and the dns module, which is required to connect pymongo to Atlas using a DNS seed list connection string.

  • Creates an instance of the MongoClient class to establish a connection to your Atlas cluster.

  • The query uses the following pipeline stages:

    • $search to search the title field using the should clause with the wildcard operator to search for titles that begin with Prance and Prince. The query also specifies that results must be sorted by the title field in ascending order.

    • $limit stage to limit the output to 5 results.

    • $project stage to:

      • Exclude all fields except title.

      • Add a field named score.

  • Iterates over the cursor to print the documents that match the query.

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [
8 {'$search': {
9 'compound': {
10 'should': [{'wildcard': {'query': 'Prance*', 'path': 'title', 'allowAnalyzedField': True}},
11 {'wildcard': {'query': 'Prince*', 'path': 'title', 'allowAnalyzedField': True}}]
12 },
13 'sort': { 'title': 1 }}},
14 {'$limit': 5},
15 {'$project': {'_id': 0, 'title': 1, 'score': {'$meta': 'searchScore'}}}
16]
17
18# run pipeline
19result = client['sample_mflix']['movies'].aggregate(pipeline)
20
21# print results
22for i in result:
23 print(i)
{'title': 'Prancer', 'score': 1.0}
{'title': 'Prancer Returns', 'score': 1.0}
{'title': 'Prince', 'score': 1.0}
{'title': 'Prince Avalanche', 'score': 1.0}
{'title': 'Prince of Broadway', 'score': 1.0}

The Atlas Search results contain documents with movie titles that begin with Prance and Prince. Atlas Search returns titles with Prance followed by Prince because Atlas Search sorts documents by the title field in ascending order.

The following query shows how to sort the results regardless of the letter case. It uses the text operator to search for movies that have the term train in the title field and then sorts the results by the title field value in ascending order.

The query specifies a $limit stage to limit the documents in the results to 5 and a $project stage to do the following:

  • Include only the _id, title, and awards fields in the results.

  • Add a field named score in the results.

[
{
"$search": {
"text": {
"path": "title",
"query": "train",
},
"sort": {
"title": 1
}
}
}
]
SCORE: 3.317898988723755 _id: "573a139cf29313caabcf662c"
plot: "A train filled with atomic devices threatens to destroy the city of De…"
genres: Array
runtime: 122
SCORE: 3.317898988723755 _id: "64de50ae2932de4dd3203061"
genres: Array
title: "atomic train"
awards: Object
SCORE: 2.228306293487549 _id: "573a13bbf29313caabd52ff4"
fullplot: "Long ago up North on the Island of Berk, the young Viking, Hiccup, wan…"
imdb: Object
year: 2010
SCORE: 2.228306293487549 _id: "64de50da2932de4dd3204393"
genres: Array
title: "how to train your dragon"
awards: Object
SCORE: 2.008449077606201 _id: "573a13ccf29313caabd83281"
plot: "When Hiccup and Toothless discover an ice cave that is home to hundred…"
genres: Array
runtime: 102
SCORE: 1.4400973320007324 _id: "573a13b1f29313caabd36490"
plot: "The life and times of Howard Zinn: the historian, activist, and author…"
genres: Array
runtime: 78
SCORE: 2.228306293487549 _id: "573a1394f29313caabce0fb4"
plot: "A marshal tries to bring the son of an old friend, an autocratic cattl…"
genres: Array
runtime: 95
SCORE: 2.8528976440429688 _id: "573a13c8f29313caabd78a6b"
plot: "A couple embarks on a journey home for Chinese new year along with 130…"
genres: Array
runtime: 85
SCORE: 2.502213716506958 _id: "573a13baf29313caabd50811"
plot: "Two thugs from the Perth suburb of Midland catch the last train to Fre…"
genres: Array
runtime: 89
SCORE: 2.502213716506958 _id: "573a13a7f29313caabd1b667"
fullplot: "A teacher and a gangster meet by chance in a small town pharmacy. As a…"
imdb: Object
year: 2002

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

SCORE: 3.317898988723755 _id: "573a139cf29313caabcf662c"
plot: "A train filled with atomic devices threatens to destroy the city of De…"
genres: Array
runtime: 122
SCORE: 2.2382168769836426 _id: "573a13bbf29313caabd52ff4"
fullplot: "Long ago up North on the Island of Berk, the young Viking, Hiccup, wan…"
imdb: object
year: 2010
SCORE: 2.008449077606201 _id: "573a13ccf29313caabd83281"
plot: "When Hiccup and Toothless discover an ice cave that is home to hundred…"
genres: Array
runtime: 102
SCORE: 1.4400973320007324 _id: "573a13b1f29313caabd36490"
plot: "The life and times of Howard Zinn: the historian, activist, and author…"
genres: Array
runtime: 78
SCORE: 2.8528976440429688 _id: "573a13c8f29313caabd78a6b"
plot: "A couple embarks on a journey home for Chinese new year along with 130…"
genres: Array
runtime: 85
SCORE: 2.228306293487549 _id: "573a1394f29313caabce0fb4"
plot: "A marshal tries to bring the son of an old friend, an autocratic cattl…"
genres: Array
runtime: 95
SCORE: 2.502213716506958 _id: "573a13baf29313caabd50811"
plot: "Two thugs from the Perth suburb of Midland catch the last train to Fre…"
genres: Array
runtime: 89
SCORE: 2.502213716506958 _id: "573a13a7f29313caabd1b667"
fullplot: "A teacher and a gangster meet by chance in a small town pharmacy. As a…"
imdb: Object
year: 2002
SCORE: 3.3326687812805176 _id: "573a139af29313caabcef573"
plot: "A vengeful New York transit cop decides to steal a trainload of subway…"
genres: Array
runtime: 110
SCORE: 3.3326687812805176 _id: "573a1398f29313caabceb8f2"
plot: "Three stories are connected by a Memphis hotel and the spirit of Elvis…"
genres: Array
runtime: 110

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

db.movies.aggregate(
{
"$search": {
"index": "default",
"text": {
"path": "title",
"query": "train",
},
"sort": {
"title": 1
}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 1,
"title": 1,
"awards": 1,
"score": { $meta: "searchScore" }
}
}
)
[
{
_id: ObjectId("573a139cf29313caabcf662c"),
title: 'Atomic Train',
awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' },
score: 3.317898988723755
},
{
_id: ObjectId("64de50ae2932de4dd3203061"),
title: 'atomic train',
awards: { wins: 1, nominations: 1 },
score: 3.317898988723755
},
{
_id: ObjectId("573a13bbf29313caabd52ff4"),
title: 'How to Train Your Dragon',
awards: {
wins: 32,
nominations: 51,
text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'
},
score: 2.228306293487549
},
{
_id: ObjectId("64de50da2932de4dd3204393"),
title: 'how to train your dragon',
awards: { wins: 32, nominations: 51 },
score: 2.228306293487549
},
{
_id: ObjectId("573a13ccf29313caabd83281"),
title: 'How to Train Your Dragon 2',
awards: {
wins: 18,
nominations: 52,
text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'
},
score: 2.008449077606201
}
]

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

[
{
_id: ObjectId("573a139cf29313caabcf662c"),
title: 'Atomic Train',
awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' },
score: 3.3326687812805176
},
{
_id: ObjectId("573a13bbf29313caabd52ff4"),
title: 'How to Train Your Dragon',
awards: {
wins: 32,
nominations: 51,
text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'
},
score: 2.2382168769836426
},
{
_id: ObjectId("573a13ccf29313caabd83281"),
title: 'How to Train Your Dragon 2',
awards: {
wins: 18,
nominations: 52,
text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'
},
score: 2.0173802375793457
},
{
_id: ObjectId("573a13b1f29313caabd36490"),
title: "Howard Zinn: You Can't Be Neutral on a Moving Train",
awards: { wins: 1, nominations: 0, text: '1 win.' },
score: 1.446497917175293
},
{
_id: ObjectId("573a13c8f29313caabd78a6b"),
title: 'Last Train Home',
awards: { wins: 14, nominations: 9, text: '14 wins & 9 nominations.' },
score: 2.8655927181243896
}
]

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

Pipeline Stage
Query

$search

{
"index": "default",
"text": {
"path": "title",
"query": "train",
},
"sort": {
"title": 1,
}
}

$limit

5

$project

{
"_id": 1,
"title": 1,
"awards": 1,
"score": { $meta: "searchScore" }
}

If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $project pipeline stage:

_id: ObjectId('573a139cf29313caabcf662c')
title: 'Atomic Train'
awards: Object
score: 3.317898988723755
_id: ObjectId("64de50ae2932de4dd3203061")
title: 'atomic train'
awards: Object
score: 3.317898988723755
_id: ObjectId('573a13bbf29313caabd52ff4')
title: 'How to Train Your Dragon'
awards: Object
score: 2.228306293487549
_id: ObjectId("64de50da2932de4dd3204393"),
title: 'how to train your dragon'
awards:
score: 2.228306293487549
_id: ObjectId('573a13ccf29313caabd83281')
title: 'How to Train Your Dragon 2'
awards: object
score: 2.0173802375793457

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class CaseInsensitiveSort
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our MovieDocument
14 var camelCaseConvention = new ConventionPack { new camelCaseConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var yourDatabase = mongoClient.GetDatabase("sample_mflix");
20 var moviesCollection = yourDatabase.GetCollection<MovieDocument>("movies");
21
22 // define options for search
23 var searchOptions = new SearchOptions<MovieDocument>() {
24 Sort = Builders<MovieDocument>.Sort.Ascending(movie => movie.Title),
25 IndexName = "default"
26 };
27
28 // define and run pipeline
29 var results = moviesCollection.Aggregate()
30 .Search(Builders<MovieDocument>.Search.Text(movie => movie.Title, "train"), searchOptions)
31 .Limit (5)
32 .Project<MovieDocument>(Builders<MovieDocument>.Projection
33 .Include(movie => movie.Id)
34 .Include(movie => movie.Title)
35 .Include(movie => movie.Awards)
36 .MetaSearchScore(movie => movie.Score))
37 .ToList();
38
39 // print results
40 foreach (var movie in results)
41 {
42 Console.WriteLine(movie.ToJson());
43 }
44 }
45}
46
47[BsonIgnoreExtraElements]
48public class MovieDocument
49{
50 [BsonIgnoreIfDefault]
51 public ObjectId Id { get; set; }
52 public string Title { get; set; }
53 public Award Awards { get; set; }
54 public double Score { get; set; }
55}
56
57[BsonIgnoreExtraElements]
58public class Award
59{
60 public int Wins { get; set; }
61 public int Nominations { get; set; }
62}
{ "_id" : ObjectId("573a139cf29313caabcf662c"), "title" : "Atomic Train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035578727722168 }
{ "_id" : ObjectId("64de50ae2932de4dd3203061"), "title" : "atomic train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035578727722168 }
{ "_id" : ObjectId("573a13bbf29313caabd52ff4"), "title" : "How to Train Your Dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186923027038574 }
{ "_id" : ObjectId("64de50da2932de4dd3204393"), "title" : "how to train your dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186923027038574 }
{ "_id" : ObjectId("573a13ccf29313caabd83281"), "title" : "How to Train Your Dragon 2", "awards" : { "wins" : 18, "nominations" : 52 }, "score" : 1.9997868537902832 }

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

{ "_id" : ObjectId("573a139cf29313caabcf662c"), "title" : "Atomic Train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035225868225098 }
{ "_id" : ObjectId("573a13bbf29313caabd52ff4"), "title" : "How to Train Your Dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186522483825684 }
{ "_id" : ObjectId("573a13ccf29313caabd83281"), "title" : "How to Train Your Dragon 2", "awards" : { "wins" : 18, "nominations" : 52 }, "score" : 1.9997482299804688 }
{ "_id" : ObjectId("573a13b1f29313caabd36490"), "title" : "Howard Zinn: You Can't Be Neutral on a Moving Train", "awards" : { "wins" : 1, "nominations" : 0 }, "score" : 1.4338588714599609 }
{ "_id" : ObjectId("573a13c8f29313caabd78a6b"), "title" : "Last Train Home", "awards" : { "wins" : 14, "nominations" : 9 }, "score" : 2.8405368328094482 }

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("sample_mflix").Collection("movies")
22
23 // define pipeline stages
24 searchStage := bson.D{{"$search", bson.M{
25 "index": "default",
26 "text": bson.D{
27 {"path", "title"},
28 {"query", "train"},
29 },
30 "sort": bson.D{{"title", 1}},
31 }}}
32 limitStage := bson.D{{"$limit", 5}}
33 projectStage := bson.D{{"$project", bson.D{{"_id", 1}, {"title", 1}, {"awards", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
34
35 // run pipeline
36 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
37 if err != nil {
38 panic(err)
39 }
40
41 // print results
42 var results []bson.D
43 if err = cursor.All(context.TODO(), &results); err != nil {
44 panic(err)
45 }
46 for _, result := range results {
47 fmt.Println(result)
48 }
49}
[{_id ObjectID("573a139cf29313caabcf662c")} {title Atomic Train} {awards [{wins 1} {nominations 1} {text 1 win & 1 nomination.}]} {score 3.317898988723755}]
[{_id ObjectId("64de50ae2932de4dd3203061")} {title atomic train} {awards [{wins 1} {nominations 1}]} {score 3.317898988723755}]
[{_id ObjectID("573a13bbf29313caabd52ff4")} {title How to Train Your Dragon} {awards [{wins 32} {nominations 51} {text Nominated for 2 Oscars. Another 30 wins & 51 nominations.}]} {score 2.228306293487549}]
[{_id ObjectId("64de50da2932de4dd3204393")} {title how to train your dragon} {awards [{wins 32} {nominations 51}]} {score 2.228306293487549}]
[{_id ObjectID("573a13ccf29313caabd83281")} {title How to Train Your Dragon 2} {awards [{wins 18} {nominations 52} {text Nominated for 1 Oscar. Another 17 wins & 52 nominations.}]} {score 2.008449077606201}]

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

[{_id ObjectID("573a139cf29313caabcf662c")} {title Atomic Train} {awards [{wins 1} {nominations 1} {text 1 win & 1 nomination.}]} {score 3.3326687812805176}]
[{_id ObjectID("573a13bbf29313caabd52ff4")} {title How to Train Your Dragon} {awards [{wins 32} {nominations 51} {text Nominated for 2 Oscars. Another 30 wins & 51 nominations.}]} {score 2.2382168769836426}]
[{_id ObjectID("573a13ccf29313caabd83281")} {title How to Train Your Dragon 2} {awards [{wins 18} {nominations 52} {text Nominated for 1 Oscar. Another 17 wins & 52 nominations.}]} {score 2.0173802375793457}]
[{_id ObjectID("573a13b1f29313caabd36490")} {title Howard Zinn: You Can't Be Neutral on a Moving Train} {awards [{wins 1} {nominations 0} {text 1 win.}]} {score 1.446497917175293}]
[{_id ObjectID("573a13c8f29313caabd78a6b")} {title Last Train Home} {awards [{wins 14} {nominations 9} {text 14 wins & 9 nominations.}]} {score 2.8655927181243896}]

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

1import java.util.Arrays;
2import static com.mongodb.client.model.Aggregates.limit;
3import static com.mongodb.client.model.Aggregates.project;
4import static com.mongodb.client.model.Projections.*;
5import com.mongodb.client.MongoClient;
6import com.mongodb.client.MongoClients;
7import com.mongodb.client.MongoCollection;
8import com.mongodb.client.MongoDatabase;
9import org.bson.Document;
10
11public class CaseInsensitiveQuery {
12 public static void main( String[] args ) {
13 // define query
14 Document agg =
15 new Document("$search",
16 new Document("index", "default")
17 .append("text",
18 new Document("path", "title")
19 .append("query", "train"))
20 .append("sort",
21 new Document("title", 1)));
22
23 // specify connection
24 String uri = "<connection-string>";
25
26 // establish connection and set namespace
27 try (MongoClient mongoClient = MongoClients.create(uri)) {
28 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
29 MongoCollection<Document> collection = database.getCollection("movies");
30
31 // run query and print results
32 collection.aggregate(Arrays.asList(agg,
33 limit(5),
34 project(fields(include("_id"), include("title"), include("awards"), computed("score", new Document("$meta", "searchScore"))))))
35 .forEach(doc -> System.out.println(doc.toJson()));
36 }
37 }
38}
{"_id": {"$oid": "573a139cf29313caabcf662c"}, "title": "Atomic Train", "awards": {"wins": 1, "nominations": 1, "text": "1 win & 1 nomination."}, "score": 3.317898988723755}
{"_id": {"$oid": "64de50ae2932de4dd3203061"}, "title": "atomic train", "awards": {"wins": 1, "nominations": 1}, "score": 3.317898988723755}
{"_id": {"$oid": "573a13bbf29313caabd52ff4"}, "title": "How to Train Your Dragon", "awards": {"wins": 32, "nominations": 51, "text": "Nominated for 2 Oscars. Another 30 wins & 51 nominations."}, "score": 2.228306293487549}
{"_id": {"$oid": "64de50da2932de4dd3204393"}, "title": "how to train your dragon", "awards": {"wins": 32, "nominations": 51}, "score": 2.228306293487549}
{"_id": {"$oid": "573a13ccf29313caabd83281"}, "title": "How to Train Your Dragon 2", "awards": {"wins": 18, "nominations": 52, "text": "Nominated for 1 Oscar. Another 17 wins & 52 nominations."}, "score": 2.008449077606201}

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

{"_id": {"$oid": "573a139cf29313caabcf662c"}, "title": "Atomic Train", "awards": {"wins": 1, "nominations": 1, "text": "1 win & 1 nomination."}, "score": 3.3326687812805176}
{"_id": {"$oid": "573a13bbf29313caabd52ff4"}, "title": "How to Train Your Dragon", "awards": {"wins": 32, "nominations": 51, "text": "Nominated for 2 Oscars. Another 30 wins & 51 nominations."}, "score": 2.2382168769836426}
{"_id": {"$oid": "573a13ccf29313caabd83281"}, "title": "How to Train Your Dragon 2", "awards": {"wins": 18, "nominations": 52, "text": "Nominated for 1 Oscar. Another 17 wins & 52 nominations."}, "score": 2.0173802375793457}
{"_id": {"$oid": "573a13b1f29313caabd36490"}, "title": "Howard Zinn: You Can't Be Neutral on a Moving Train", "awards": {"wins": 1, "nominations": 0, "text": "1 win."}, "score": 1.446497917175293}
{"_id": {"$oid": "573a13c8f29313caabd78a6b"}, "title": "Last Train Home", "awards": {"wins": 14, "nominations": 9, "text": "14 wins & 9 nominations."}, "score": 2.8655927181243896}

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // establish connection and set namespace
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12 val database = mongoClient.getDatabase("sample_mflix")
13 val collection = database.getCollection<Document>("movies")
14
15 runBlocking {
16 // define query
17 val agg = Document(
18 "\$search",
19 Document("index", "default")
20 .append(
21 "text",
22 Document("path", "title")
23 .append("query", "train")
24 )
25 .append(
26 "sort",
27 Document("title", 1)
28 )
29 )
30
31 // run query and print results
32 val resultsFlow = collection.aggregate<Document>(
33 listOf(
34 agg,
35 limit(5),
36 project(fields(
37 excludeId(),
38 include("title", "awards"),
39 computed("score", Document("\$meta", "searchScore"))
40 ))
41 )
42 )
43 resultsFlow.collect { println(it) }
44 }
45 mongoClient.close()
46}
Document{{title=atomic train, awards=Document{{wins=1, nominations=1}}, score=3.3326687812805176}}
Document{{title=Atomic Train, awards=Document{{wins=1, nominations=1, text=1 win & 1 nomination.}}, score=3.3326687812805176}}
Document{{title=how to train your dragon, awards=Document{{wins=32, nominations=51}}, score=2.2382168769836426}}
Document{{title=How to Train Your Dragon, awards=Document{{wins=32, nominations=51, text=Nominated for 2 Oscars. Another 30 wins & 51 nominations.}}, score=2.2382168769836426}}
Document{{title=How to Train Your Dragon 2, awards=Document{{wins=18, nominations=52, text=Nominated for 1 Oscar. Another 17 wins & 52 nominations.}}, score=2.0173802375793457}}

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

Document{{title=Atomic Train, awards=Document{{wins=1, nominations=1, text=1 win & 1 nomination.}}, score=3.3326687812805176}}
Document{{title=How to Train Your Dragon, awards=Document{{wins=32, nominations=51, text=Nominated for 2 Oscars. Another 30 wins & 51 nominations.}}, score=2.2382168769836426}}
Document{{title=How to Train Your Dragon 2, awards=Document{{wins=18, nominations=52, text=Nominated for 1 Oscar. Another 17 wins & 52 nominations.}}, score=2.0173802375793457}}
Document{{title=Howard Zinn: You Can't Be Neutral on a Moving Train, awards=Document{{wins=1, nominations=0, text=1 win.}}, score=1.446497917175293}}
Document{{title=Last Train Home, awards=Document{{wins=14, nominations=9, text=14 wins & 9 nominations.}}, score=2.8655927181243896}}

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

1const { MongoClient } = require("mongodb");
2
3// Replace the uri string with your MongoDB deployments connection string.
4const uri =
5 "<connection-string>";
6
7const client = new MongoClient(uri);
8
9async function run() {
10 try {
11 await client.connect();
12
13 // set namespace
14 const database = client.db("sample_mflix");
15 const coll = database.collection("movies");
16
17 // define pipeline
18 const agg = [
19 {
20 '$search': {
21 'index': 'default',
22 'text': { 'path': 'title', 'query': 'train' },
23 'sort': { 'title': 1 }
24 }
25 }, {
26 '$limit': 5
27 }, {
28 '$project': { '_id': 1, 'title': 1, 'awards': 1, 'score': { '$meta': 'searchScore' }}
29 }
30 ];
31
32 // run pipeline
33 const result = await coll.aggregate(agg);
34
35 // print results
36 await result.forEach((doc) => console.log(doc));
37
38 } finally {
39 await client.close();
40 }
41}
42run().catch(console.dir);
{
_id: new ObjectId("573a139cf29313caabcf662c"),
title: 'Atomic Train',
awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' },
score: 3.317898988723755
}
{
_id: new ObjectId("64de50ae2932de4dd3203061"),
title: 'atomic train',
awards: { wins: 1, nominations: 1 },
score: 3.317898988723755
}
{
_id: new ObjectId("573a13bbf29313caabd52ff4"),
title: 'How to Train Your Dragon',
awards: {
wins: 32,
nominations: 51,
text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'
},
score: 2.228306293487549
}
{
_id: new ObjectId("64de50da2932de4dd3204393"),
title: 'how to train your dragon',
awards: { wins: 32, nominations: 51 },
score: 2.228306293487549
}
{
_id: new ObjectId("573a13ccf29313caabd83281"),
title: 'How to Train Your Dragon 2',
awards: {
wins: 18,
nominations: 52,
text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'
},
score: 2.008449077606201
}

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

{
_id: new ObjectId("573a139cf29313caabcf662c"),
title: 'Atomic Train',
awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' },
score: 3.3326687812805176
}
{
_id: new ObjectId("573a13bbf29313caabd52ff4"),
title: 'How to Train Your Dragon',
awards: {
wins: 32,
nominations: 51,
text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'
},
score: 2.2382168769836426
}
{
_id: new ObjectId("573a13ccf29313caabd83281"),
title: 'How to Train Your Dragon 2',
awards: {
wins: 18,
nominations: 52,
text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'
},
score: 2.0173802375793457
}
{
_id: new ObjectId("573a13b1f29313caabd36490"),
title: "Howard Zinn: You Can't Be Neutral on a Moving Train",
awards: { wins: 1, nominations: 0, text: '1 win.' },
score: 1.446497917175293
}
{
_id: new ObjectId("573a13c8f29313caabd78a6b"),
title: 'Last Train Home',
awards: { wins: 14, nominations: 9, text: '14 wins & 9 nominations.' },
score: 2.8655927181243896
}

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [
8 {
9 '$search': {
10 'index': 'default',
11 'text': { 'path': 'title', 'query': 'train' },
12 'sort': { 'title': 1 }
13 }
14 }, {
15 '$limit': 5
16 }, {
17 '$project': { '_id': 1, 'title': 1, 'awards': 1, 'score': { '$meta': 'searchScore' } }
18 }
19]
20
21# run pipeline
22result = client['sample_mflix']['movies'].aggregate(pipeline)
23
24# print results
25for i in result:
26 print(i)
{'_id': ObjectId('573a139cf29313caabcf662c'), 'title': 'Atomic Train', 'awards': {'wins': 1, 'nominations': 1, 'text': '1 win & 1 nomination.'}, 'score': 3.317898988723755}
{'_id': ObjectId('64de50ae2932de4dd3203061'), 'title': 'atomic train', 'awards': {'wins': 1, 'nominations': 1}, 'score': 3.317898988723755}
{'_id': ObjectId('573a13bbf29313caabd52ff4'), 'title': 'How to Train Your Dragon', 'awards': {'wins': 32, 'nominations': 51, 'text': 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'}, 'score': 2.228306293487549}
{'_id': ObjectId('64de50da2932de4dd3204393'), 'title': 'how to train your dragon', 'awards': {'wins': 32, 'nominations': 51}, 'score': 2.228306293487549}
{'_id': ObjectId('573a13ccf29313caabd83281'), 'title': 'How to Train Your Dragon 2', 'awards': {'wins': 18, 'nominations': 52, 'text': 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'}, 'score': 2.008449077606201}

The results contain documents sorted regardless of the letter case. However, if you set normalizer to none, Atlas Search returns the following results:

{'_id': ObjectId('573a139cf29313caabcf662c'), 'title': 'Atomic Train', 'awards': {'wins': 1, 'nominations': 1, 'text': '1 win & 1 nomination.'}, 'score': 3.3326687812805176}
{'_id': ObjectId('573a13bbf29313caabd52ff4'), 'title': 'How to Train Your Dragon', 'awards': {'wins': 32, 'nominations': 51, 'text': 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'}, 'score': 2.2382168769836426}
{'_id': ObjectId('573a13ccf29313caabd83281'), 'title': 'How to Train Your Dragon 2', 'awards': {'wins': 18, 'nominations': 52, 'text': 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'}, 'score': 2.0173802375793457}
{'_id': ObjectId('573a13b1f29313caabd36490'), 'title': "Howard Zinn: You Can't Be Neutral on a Moving Train", 'awards': {'wins': 1, 'nominations': 0, 'text': '1 win.'}, 'score': 1.446497917175293}
{'_id': ObjectId('573a13c8f29313caabd78a6b'), 'title': 'Last Train Home', 'awards': {'wins': 14, 'nominations': 9, 'text': '14 wins & 9 nominations.'}, 'score': 2.8655927181243896}

To sort your results without normalizing the letter case, set the normalizer option to none (on line 7) in your index definition, save the index definition, and rerun the query.

The following query uses the range operator to search the the released field in the sample_mflix.movies collection for movies released between 2015-01-01 and 2015-12-31. It sorts the results by the _id field, which contains value of type ObjectId, in descending order.

db.movies.aggregate([
{
"$search": {
"range": {
"path": "released",
"gt": ISODate("2015-01-01T00:00:00.000Z"),
"lt": ISODate("2015-12-31T00:00:00.000Z")
},
"sort": {
"_id": -1
}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 1,
"title": 1,
"released": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{
_id: ObjectId('573a13fbf29313caabdedf31'),
title: 'No Home Movie',
released: ISODate('2015-08-10T00:00:00.000Z'),
score: 1
},
{
_id: ObjectId('573a13fbf29313caabdedf30'),
title: 'Our Loved Ones',
released: ISODate('2015-08-12T00:00:00.000Z'),
score: 1
},
{
_id: ObjectId('573a13faf29313caabded406'),
title: 'The Red Spider',
released: ISODate('2015-11-20T00:00:00.000Z'),
score: 1
},
{
_id: ObjectId('573a13faf29313caabded1d6'),
title: 'The Laundryman',
released: ISODate('2015-07-11T00:00:00.000Z'),
score: 1
},
{
_id: ObjectId('573a13faf29313caabdecaf3'),
title: 'Right Now, Wrong Then',
released: ISODate('2015-09-01T00:00:00.000Z'),
score: 1
}
]

The following query searches for the term hello in field b in the users collection. The query sorts the results by field a, which contains polymorphic data (to demonstrate the sort order), in ascending order.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"a": 1
}
}
},
{
"$project": {
"_id": 1,
"a": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 3, score: 0.029335692524909973 },
{
_id: 0,
a: UUID('1a324de2-e34b-c87e-f2a1-42ce37ad74ed'),
score: 0.029335692524909973
},
{
_id: 1,
a: UUID('3b241101-e2bb-4255-8caf-4136c566a962'),
score: 0.029335692524909973
},
{
_id: 6,
a: UUID('7eeddf21-b313-4a5c-81c2-c68915daa618'),
score: 0.029335692524909973
},
{
_id: 4,
a: UUID('d3c12e1c-c36e-25ed-7c3e-1e7f1e53c752'),
score: 0.029335692524909973
},
{
_id: 5,
a: UUID('d73f181e-cdda-42b4-b844-4d6e172e9bc8'),
score: 0.029335692524909973
},
{
_id: 2,
a: UUID('dee11d4e-63c6-4d90-983c-5c9f1e79e96c'),
score: 0.029335692524909973
}
]

Consider the following queries that search field b for the string hello in the users collection using the text operator. The query then sorts the results by field c, which contains null or missing values for some documents in the collection.

To learn more, see Sort by Null and Missing Values.

During an ascending sort, Atlas Search returns documents with null or missing values at the top of the results by default, as shown in the following example:

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": { "c": 1 }
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 4, c: null, score: 0.029335692524909973 },
{ _id: 5, c: [], score: 0.029335692524909973 },
{ _id: 6, score: 0.029335692524909973 },
{ _id: 2, c: 'foo', score: 0.029335692524909973 },
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.029335692524909973
},
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.029335692524909973
},
{ _id: 1, c: true, score: 0.029335692524909973 }
]

During a descending sort, Atlas Search returns documents with null or missing values at the bottom of the results by default, as shown in the following example:

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": { "c": -1 }
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 1, c: true, score: 0.025981096550822258 },
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{ _id: 2, c: 'foo', score: 0.025981096550822258 },
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 }
]

Note

Setting noData: lowest is the same as the default.

If you specify the noData field as lowest during an ascending sort, Atlas Search returns documents with null or missing values at the top of the results, as shown in the following example.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": 1,
"noData": "lowest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 4, c: null, score: 0.029335692524909973 },
{ _id: 5, c: [], score: 0.029335692524909973 },
{ _id: 6, score: 0.029335692524909973 },
{ _id: 2, c: 'foo', score: 0.029335692524909973 },
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.029335692524909973
},
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.029335692524909973
},
{ _id: 1, c: true, score: 0.029335692524909973 }
]

If you specify the noData field as lowest during a descending sort, Atlas Search returns documents with null or missing values at the bottom of the results, as shown in the following example.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": -1,
"noData": "lowest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 1, c: true, score: 0.025981096550822258 },
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{ _id: 2, c: 'foo', score: 0.025981096550822258 },
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 }
]

If you specify the noData field as highest during an ascending sort, Atlas Search returns documents with null or missing values at the bottom of the results, as shown in the following example.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": 1,
"noData": "highest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 2, c: 'foo', score: 0.025981096550822258 },
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{ _id: 1, c: true, score: 0.025981096550822258 },
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 }
]

If you specify the noData field as highest during a descending sort, Atlas Search returns documents with null or missing values at the top of the results, as shown in the following example.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": -1,
"noData": "highest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 },
{ _id: 1, c: true, score: 0.025981096550822258 },
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{ _id: 2, c: 'foo', score: 0.025981096550822258 }
]

The order of documents with "_id": 4, "_id": 5, and "_id": 6 is random because Atlas Search treats null and missing values as equal when sorting.

Consider the following queries on the users collection given an additional document with a multi-typed array in field c:

db.users.insertOne({
"_id": 7,
"a": UUID("03e32aa9-1cbd-43b8-b9d6-18b171a03cc7"),
"b": "hello",
"c": [ false, null, 15 ]
})

The following queries search field b for the string hello using the text operator and sorts the results by field c.

Note

Setting noData: lowest in your sort syntax is the same as the default.

For an ascending sort, Atlas Search uses the element with the lowest BSON type to represent the multi-typed array. By default, Atlas Search considers null or missing values as the lowest BSON value. Therefore, Atlas Search uses null to represent the multi-typed array for the document with _id: 7 and returns this document at the top of the results along with other null and missing values.

To learn more, see Sort by Null and Missing Values and Sort Arrays with Multiple Types.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": 1
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 }
{ _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 },
{ _id: 2, c: 'foo', score: 0.025981096550822258 },
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{ _id: 1, c: true, score: 0.025981096550822258 }
]

The order of documents with "_id": 4, "_id": 5, "_id": 6, and "_id": 7 is random because Atlas Search treats null and missing values as equal when sorting.

For a descending sort, Atlas Search uses the element with the highest BSON type to represent the multi-typed array. Atlas Search uses false to represent the multi-typed array for the document with _id: 7, as this is the highest BSON type in the array. Since Atlas Search also ranks true values above false values, Atlas Search returns this document after the document with _id: 1.

To learn more, see Sort by Null and Missing Values and Sort Arrays with Multiple Types.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": -1
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 1, c: true, score: 0.025981096550822258 },
{ _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 },
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{ _id: 2, c: 'foo', score: 0.025981096550822258 }
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 },
]

The order of documents with "_id": 4, "_id": 5, and "_id": 6 is random because Atlas Search treats null and missing values as equal when sorting.

The following queries specify noData: highest to set null values as the highest BSON type during sorting.

For an ascending sort, Atlas Search uses the element with the lowest BSON type to represent the multi-typed array. The query specifies noData: highest to consider null or missing values as the highest BSON value, so Atlas Search uses 15 to represent the multi-typed array for the document with _id: 7 since numbers are the next lowest BSON type in the array.

To learn more, see Sort by Null and Missing Values and Sort Arrays with Multiple Types.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": 1,
"noData": "highest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 },
{ _id: 2, c: 'foo', score: 0.025981096550822258 },
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{ _id: 1, c: true, score: 0.025981096550822258 },
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 }
]

The order of documents with "_id": 4, "_id": 5, and "_id": 6 is random because Atlas Search treats null and missing values as equal when sorting.

For a descending sort, Atlas Search uses the element with the highest BSON type to represent the multi-typed array. Since the query specifies the noData field as highest to set null or missing values as the highest BSON value, Atlas Search uses null to represent the multi-typed array for the document with _id: 7 and returns this document at the top of the results along with other null and missing values.

To learn more, see Sort by Null and Missing Values and Sort Arrays with Multiple Types.

db.users.aggregate([
{
"$search": {
"text": {
"path": "b",
"query": "hello"
},
"sort": {
"c": {
"order": -1,
"noData": "highest"
}
}
}
},
{
"$project": {
"_id": 1,
"c": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{ _id: 4, c: null, score: 0.025981096550822258 },
{ _id: 5, c: [], score: 0.025981096550822258 },
{ _id: 6, score: 0.025981096550822258 },
{ _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 },
{ _id: 1, c: true, score: 0.025981096550822258 },
{
_id: 0,
c: ObjectId('507f1f77bcf86cd799439011'),
score: 0.025981096550822258
},
{
_id: 3,
c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'),
score: 0.025981096550822258
},
{ _id: 2, c: 'foo', score: 0.025981096550822258 }
]

The order of documents with "_id": 4, "_id": 5, "_id": 6, and "_id": 7 is random because Atlas Search treats null and missing values as equal when sorting.

The following query searches the sample_airbnb.listingsAndReviews collection for properties in Portugal and sorts the results in descending order by the boolean field is_location_exact.

The query uses the $limit stage to limit the output to 5 documents. It also uses the $project stage to omit all fields except name, property_type, address.country, and address.location.is_location_exact in the results.

1db.listingsAndReviews.aggregate([
2 {
3 "$search": {
4 "text": {
5 "path": "address.country",
6 "query": "Portugal"
7 },
8 "sort": {
9 "address.location.is_location_exact": -1,
10 }
11 }
12 },
13 {
14 "$limit": 5
15 },
16 {
17 "$project": {
18 "_id": 0,
19 "name": 1,
20 "property_type": 1,
21 "address.country": 1,
22 "address.location.is_location_exact": 1
23 }
24 }
25])
1[
2 {
3 name: 'BBC OPORTO 4X2',
4 property_type: 'Apartment',
5 address: { country: 'Portugal', location: { is_location_exact: true } }
6 },
7 {
8 name: 'Heroísmo IV',
9 property_type: 'Apartment',
10 address: { country: 'Portugal', location: { is_location_exact: true } }
11 },
12 {
13 name: 'Spacious and well located apartment',
14 property_type: 'Apartment',
15 address: { country: 'Portugal', location: { is_location_exact: true } }
16 },
17 {
18 name: 'Renovated Classic Design Studio with Sun Room',
19 property_type: 'Apartment',
20 address: { country: 'Portugal', location: { is_location_exact: true } }
21 },
22 {
23 name: "O'Porto Studio | Historic Center",
24 property_type: 'Loft',
25 address: { country: 'Portugal', location: { is_location_exact: true } }
26 }
27]

In the preceding results, the value of is_location_exact is true for the documents because in a descending sort, Atlas Search ranks true values above false values. If you do an ascending sort by changing the value on line 9 of the preceding query to 1, Atlas Search ranks the documents with false values higher than true values and returns the following documents:

[
{
name: 'Ribeira Charming Duplex',
property_type: 'House',
address: { country: 'Portugal', location: { is_location_exact: false } }
},
{
name: 'Be Happy in Porto',
property_type: 'Loft',
address: { country: 'Portugal', location: { is_location_exact: false } }
},
{
name: 'Downtown Oporto Inn (room cleaning)',
property_type: 'Hostel',
address: { country: 'Portugal', location: { is_location_exact: false } }
},
{
name: 'A Casa Alegre é um apartamento T1.',
property_type: 'Apartment',
address: { country: 'Portugal', location: { is_location_exact: false } }
},
{
name: 'FloresRooms 3T',
property_type: 'Apartment',
address: { country: 'Portugal', location: { is_location_exact: false } }
}
]

The following query uses the $search stage to do the following:

  • Search for movies that have the term dance in the title, with a preference for movies that have won 2 or more awards and were released after 01 January, 1990.

  • Sort the results by the number of awards in descending order, then by the movie title in ascending order, and then by the release date in descending order.

The query uses the $limit stage to limit the output to 10 documents. It also uses the $project stage to do the following:

  • Omit all fields except title, released, and awards.wins in the results.

  • Add a field named score.

db.movies.aggregate([
{
"$search": {
"compound": {
"must": [{
"text": {
"path": "title",
"query": "dance"
}
}],
"should": [{
"range": {
"path": "awards.wins",
"gte": 2
}
}, {
"range": {
"path": "released",
"gte": ISODate("1990-01-01T00:00:00.000Z")
}
}]
},
"sort": {
"awards.wins": -1,
"title": 1,
"released": -1
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"released": 1,
"awards.wins": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{
title: 'Shall We Dance?',
released: ISODate("1997-07-11T00:00:00.000Z"),
awards: { wins: 57 },
score: 4.9811458587646484
},
{
title: 'Shall We Dance?',
released: ISODate("1997-07-11T00:00:00.000Z"),
awards: { wins: 57 },
score: 4.9811458587646484
},
{
title: 'War Dance',
released: ISODate("2008-11-01T00:00:00.000Z"),
awards: { wins: 11 },
score: 5.466421127319336
},
{
title: 'Dance with the Devil',
released: ISODate("1997-10-31T00:00:00.000Z"),
awards: { wins: 6 },
score: 4.615056037902832
},
{
title: 'Save the Last Dance',
released: ISODate("2001-01-12T00:00:00.000Z"),
awards: { wins: 6 },
score: 4.615056037902832
},
{
title: 'Dance with a Stranger',
released: ISODate("1985-08-09T00:00:00.000Z"),
awards: { wins: 4 },
score: 3.615056037902832
},
{
title: 'The Baby Dance',
released: ISODate("1998-08-23T00:00:00.000Z"),
awards: { wins: 4 },
score: 4.981145858764648
},
{
title: 'Three-Step Dance',
released: ISODate("2004-02-19T00:00:00.000Z"),
awards: { wins: 4 },
score: 4.981145858764648
},
{
title: "Cats Don't Dance",
released: ISODate("1997-03-26T00:00:00.000Z"),
awards: { wins: 3 },
score: 4.981145858764648
},
{
title: 'Dance Me Outside',
released: ISODate("1995-03-10T00:00:00.000Z"),
awards: { wins: 3 },
score: 4.981145858764648
}
]

The following query uses the $search stage to do the following:

  • Search for movies released between 01 January, 2010 and 01, January, 2015 using the range operator.

  • Get a count of the number of movies that won 1, 5, 10, and 15 awards.

  • Get a count of the number of movies released on 2010-01-01, 2011-01-01, 2012-01-01, 2013-01-01, 2014-01-01, and 2015-01-01.

  • Sort the results in descending order of released date using the sort option.

The query uses the $limit stage to do the following:

  • Limit the output to 5 documents in the docs output field.

  • Limit the output to 1 document in the meta output field.

It uses the $project stage to omit all fields except the awards.wins, released, and title fields.

It also uses the $replaceWith stage to include the metadata results stored in the $$SEARCH_META variable in the meta output field and the $set stage to add the meta field to the results.

db.movies.aggregate([
{
"$search": {
"facet": {
"operator": {
"range": {
"path": "released",
"gt": ISODate("2010-01-01T00:00:00.000Z"),
"lt": ISODate("2015-01-01T00:00:00.000Z")
}
},
"facets": {
"awardsFacet": {
"type": "number",
"path": "awards.wins",
"boundaries" : [1,5,10,15]
},
"releasedFacet" : {
"type" : "date",
"path" : "released",
"boundaries" : [ISODate("2010-01-01T00:00:00.000Z"), ISODate("2011-01-01T00:00:00.000Z"), ISODate("2012-01-01T00:00:00.000Z"), ISODate("2013-01-01T00:00:00.000Z"), ISODate("2014-01-01T00:00:00.000Z"), ISODate("2015-01-01T00:00:00.000Z")]
}
}
},
"sort": {
"released": -1
}
}
},
{
"$facet": {
"docs": [
{ "$limit": 5 },
{ "$project":
{
"_id": 0,
"title": 1,
"released": 1,
"awards.wins": 1
}
}
],
"meta": [
{"$replaceWith": "$$SEARCH_META"},
{"$limit": 1}
]
}
},
{
"$set": {
"meta": {
"$arrayElemAt": ["$meta", 0]
}
}
}
])
[
{
docs: [
{
title: 'Cold in July',
released: ISODate("2014-12-31T00:00:00.000Z"),
awards: { wins: 1 }
},
{
title: 'The Gambler',
released: ISODate("2014-12-31T00:00:00.000Z"),
awards: { wins: 7 }
},
{
title: 'Force Majeure',
released: ISODate("2014-12-30T00:00:00.000Z"),
awards: { wins: 31 }
},
{
title: 'LFO',
released: ISODate("2014-12-27T00:00:00.000Z"),
awards: { wins: 3 }
},
{
title: 'Peace After Marriage',
released: ISODate('2014-12-26T00:00:00.000Z'),
awards: { wins: 5 }
}
],
meta: {
count: { lowerBound: Long("4821") },
facet: {
releasedFacet: {
buckets: [
{
_id: ISODate("2010-01-01T00:00:00.000Z"),
count: Long("857")
},
{
_id: ISODate("2011-01-01T00:00:00.000Z"),
count: Long("909")
},
{
_id: ISODate("2012-01-01T00:00:00.000Z"),
count: Long("903")
},
{
_id: ISODate("2013-01-01T00:00:00.000Z"),
count: Long("1063")
},
{
_id: ISODate("2014-01-01T00:00:00.000Z"),
count: Long("1089")
}
]
},
awardsFacet: {
buckets: [
{ _id: 1, count: Long("2330") },
{ _id: 5, count: Long("604") },
{ _id: 10, count: Long("233") }
]
}
}
}
}
}
]

The following examples demonstrate how to sort the results by the score of the documents in the results. The examples demonstrate how to perform the following actions:

  • Retrieve the lowest scoring documents first by sorting the results in ascending order.

  • Sort the results by score in descending order and for results with identical scores, sort arbitrarily.

  • Sort the results by score and for results with identical scores, sort using a unique field.

The following query uses the $search stage to perform the following actions:

  • Search for movies that have the term story in the title.

  • Sort the results by score in ascending order.

The query uses the $limit stage to limit the output to 5 documents. It also uses the $project stage to perform the following actions:

  • Omit all fields except title in the results.

  • Add a field named score.

db.movies.aggregate([
{
"$search": {
"text": {
"path": "title",
"query": "story"
},
"sort": {score: {$meta: "searchScore", order: 1}}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 0,
"title": 1,
"score": {$meta: "searchScore"}
}
}
])
[
{
title: 'Do You Believe in Miracles? The Story of the 1980 U.S. Hockey Team',
score: 0.8674521446228027
},
{
title: 'Once in a Lifetime: The Extraordinary Story of the New York Cosmos',
score: 0.9212141036987305
},
{
title: 'The Source: The Story of the Beats and the Beat Generation',
score: 0.9820802211761475
},
{
title: 'If These Knishes Could Talk: The Story of the NY Accent',
score: 0.9820802211761475
},
{
title: 'Dream Deceivers: The Story Behind James Vance vs. Judas Priest',
score: 1.051558256149292
}
]

The following query uses the $search stage to perform the following actions:

  • Search for movies that have the term summer in the title.

  • Sort the results by score in descending order and for results with identical scores, sort arbitrarily.

The query uses the $limit stage to limit the output to 5 documents. It also uses the $project stage to perform the following actions:

  • Omit all fields except _id and title in the results.

  • Add a field named score.

db.movies.aggregate([
{
"$search": {
"text": {
"path": "title",
"query": "summer"
},
"sort": {score: {$meta: "searchScore"}}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 1,
"title": 1,
"score": {$meta: "searchScore"}
}
}
])
[
{
_id: ObjectId("573a1398f29313caabcea21e"),
title: 'Summer',
score: 3.5844719409942627
},
{
_id: ObjectId("573a13a6f29313caabd18eca"),
title: 'Summer Things',
score: 3.000213623046875
},
{
_id: ObjectId("573a13b8f29313caabd4c1d0"),
title: 'Summer Palace',
score: 3.000213623046875
},
{
_id: ObjectId("573a1394f29313caabcde8e8"),
title: 'Summer Stock',
score: 3.000213623046875
},
{
_id: ObjectId("573a13acf29313caabd284fa"),
title: 'Wolf Summer',
score: 3.000213623046875
}
]

The following query uses the $search stage to perform the following actions:

  • Search for movies that have the term prince in the title.

  • Sort the results first by score and then by the value of the released field in ascending order for results with identical scores.

The query uses the $limit stage to limit the output to 5 documents. It also uses the $project stage to perform the following actions:

  • Omit all fields except title and released in the results.

  • Add a field named score.

db.movies.aggregate([
{
"$search": {
"text": {
"path": "title",
"query": "prince"
},
"sort": {score: {$meta: "searchScore"}, "released": 1}
}
},
{
"$limit": 5
},
{
"$project": {
"_id": 0,
"title": 1,
"released": 1,
"score": {$meta: "searchScore"}
}
}
])
[
{
title: 'Prince',
released: ISODate("2015-08-14T00:00:00.000Z"),
score: 4.168826103210449
},
{
title: 'Prince Avalanche',
released: ISODate("2013-09-19T00:00:00.000Z"),
score: 3.4893198013305664
},
{
title: 'The Prince',
released: ISODate("2014-08-22T00:00:00.000Z"),
score: 3.4893198013305664
},
{
title: 'Prince of Foxes',
released: ISODate("1949-12-23T00:00:00.000Z"),
score: 3.0002830028533936
},
{
title: 'The Oil Prince',
released: ISODate("1966-01-01T00:00:00.000Z"),
score: 3.0002830028533936
}
]

Back

Score Details